Advertisement
Canadian Journal of Cardiology

Relationships of adiponectin and matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio with coronary plaque morphology in patients with acute coronary syndrome

  • Author Footnotes
    1 These authors contributed equally to the manuscript
    Min Cheng
    Footnotes
    1 These authors contributed equally to the manuscript
    Affiliations
    Department of Interventional Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the manuscript
    Satwat Hashmi
    Footnotes
    1 These authors contributed equally to the manuscript
    Affiliations
    Department of Interventional Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
    Search for articles by this author
  • Xiaobo Mao
    Affiliations
    Department of Interventional Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
    Search for articles by this author
  • Qiu Tang Zeng
    Correspondence
    Department of Interventional Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie-Fang Avenue, Wuhan 430022, Hubei, China. Telephone 86-13-908640556.
    Affiliations
    Department of Interventional Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the manuscript
      This paper is only available as a PDF. To read, Please Download here.

      Objectives

      Adiponectin, an adipocyte-specific protein, matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a crucial role in arteriosclerosis and plaque disruption. The present study was designed to elucidate the relationship of adiponectin and the ratio of MMP-9/TIMP-1 and their effects on the stability of plaque in acute coronary syndrome (ACS).

      Methods

      The concentrations of adiponectin, MMP-9, TIMP-1 and interleukin-10 were analyzed using ELISA in 56 consecutive unselected patients divided into two groups, stable angina (n = 13) and ACS (n = 43), and were compared with 19 healthy control subjects. The 56 patients were also angiographically studied and divided into two groups, simple lesion (n = 22) and complex lesion (n = 34), based on coronary plaque morphology.

      Results

      The ratio of MMP-9/TIMP-1 showed significantly higher values in the ACS group compared with the control group (0.22 ± 0.10 versus 0.11 ± 0.03; P < 0.001). Adiponectin was negatively correlated with the ratio of MMP-9/TIMP-1 (r = −0.332; P = 0.008) and positively correlated with interleukin-10 (r = 0.651; P = 0.001). Multivariate logistic regression analysis showed that adiponectin (P=0.046) and MMP-9/TIMP-1 (P = 0.044) are independent predictors for ACS, and MMP-9/TIMP-1 (P = 0.013) is an independent predictor for complex lesion morphology plaques.

      Conclusion

      In the present study, it was found that adiponectin has a negative relationship with the ratio of MMP-9/TIMP-1 in patients with ACS, and that the ratio of MMP-9/TIMP-1 is an independent predictor of the stability of atherosclerotic plaque and the severity of coronary atherosclerosis.

      Objectifs

      L’adiponectine, une protéine sécrétée par les adipocytes, les métalloprotéinases matricielles (MMP) et les inhibiteurs tissulaires des métalloprotéinases (ITMP) jouent un rôle crucial dans l’artériosclérose et la rupture de plaque. La présente étude était conçue pour déterminer la relation de l’adiponectine avec le ratio de MMP-9/TIMP-1 et leurs effets sur la stabilité de la plaque en cas de syndrome coronarien aigu (SCA).

      Méthodologie

      Les auteurs ont analysé la concentration d’adiponectine, de MMP-9, de TIMP-1et d’interleukine-10 à l’aide du test ELISA chez 56 patients consécutifs non sélectionnés divisés en deux groupes : l’angine stable (n = 13) et le SCA (n = 43), et l’ont comparée à celle de 19 sujets témoins en santé. Les 56 patients ont également subi une étude angiographique et ont été divisés en deux groupes : lésion simple (n = 22) et lésion complexe (n = 34), d’après la morphologie de la plaque coronaire.

      Résultats

      Le ratio de MMP-9/TIMP-1 a révélé des valeurs beaucoup plus élevées dans le groupe de SCA que dans le groupe témoin (0,22 ± 0,10 par rapport à 0,11 ± 0,03; P < 0,001). L’adiponectine était inversement proportionnelle au ratio de MMP-9/TIMP-1 (r = −0,332; P = 0,008) et directement proportionnelle à l’interleukine-10 (r = 0,651; P = 0,001). L’analyse de régression logistique multivariée a révélé que l’adiponectine (P = 0,046) et les MMP-9/TIMP-1 (P = 0,044) sont des prédicteurs indépendants de SCA, et que les MMP-9/TIMP-1 (P = 0,013) sont des prédicteurs indépendants de plaques morphologiques de lésion complexe.

      Conclusion

      La présente étude a établi que l’adiponectine est inversement proportionnelle au ratio de MMP-9/TIMP-1 chez les patients atteints de SCA et que les MMP-9/TIMP-1 sont des prédicteurs indépendant de la stabilité de la plaque artérioscléreuse et de la gravité de l’artériosclérose coronaire.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arita Y.
        • Kihara S.
        • Ouchi N.
        • et al.
        Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
        Biochem Biophys Res Commun. 1999; 257: 79-83
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • et al.
        Adiponectin, an adipocytederived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway.
        Circulation. 2000; 102: 1296-1301
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • et al.
        Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.
        Circulation. 2001; 103: 1057-1063
        • Arita Y.
        • Kihara S.
        • Ouchi N.
        • et al.
        Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell.
        Circulation. 2002; 105: 2893-2898
        • Kumada M.
        • Kihara S.
        • Sumitsuji S.
        • et al.
        • Osaka CAD Study Group
        Association of hypoadiponectinemia with coronary artery disease in men.
        Arterioscler Thromb Vasc Biol. 2003; 23: 85-89
        • Efstathiou S.P.
        • Tsioulos D.I.
        • Tsiakou A.G.
        • Gratsias Y.E.
        • Pefanis A.V.
        • Mountokalakis T.D.
        Plasma adiponectin levels and five-year survival after first-ever ischemic stroke.
        Stroke. 2005; 36: 1915-1919
        • Pischon T.
        • Girman C.J.
        • Hotamisligil G.S.
        • Rifai N.
        • Hu F.B.
        • Rimm E.B.
        Plasma adiponectin levels and risk of myocardial infarction in men.
        JAMA. 2004; 291: 1730-1737
        • Maahs D.M.
        • Ogden L.G.
        • Kinney G.L.
        • et al.
        Low plasma adiponectin levels predict progression of coronary artery calcification.
        Circulation. 2005; 111: 747-753
        • Stejskal D.
        • Bartek J.
        Adiponectin in patients with various stages of coronary heart disease – comparison of its concentration in coronary arteries and peripheral venous circulation.
        Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003; 147: 161-166
        • Shah P.K.
        • Falk E.
        • Badimon J.J.
        • et al.
        Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture.
        Circulation. 1995; 92: 1565-1569
        • Nanni S.
        • Melandri G.
        • Hanemaaijer R.
        • et al.
        Matrix metalloproteinases in premature coronary atherosclerosis: Influence of inhibitors, inflammation, and genetic polymorphisms.
        Transl Res. 2007; 149: 137-144
        • Libby P.
        Molecular bases of the acute coronary syndromes.
        Circulation. 1995; 91: 2844-2850
        • Galis Z.S.
        • Sukhova G.K.
        • Lark M.W.
        • Libby P.
        Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques.
        J Clin Invest. 1994; 94: 2493-2503
        • Kaartinen M.
        • van der Wal A.C.
        • van der Loos C.M.
        • et al.
        Mast cell infiltration in acute coronary syndromes: Implications for plaque rupture.
        J Am Coll Cardiol. 1998; 32: 606-612
        • Zureik M.
        • Beaudeux J.L.
        • Courbon D.
        • Bénétos A.
        • Ducimetière P.
        Serum tissue inhibitors of metalloproteinases 1 (TIMP-1) and carotid atherosclerosis and aortic arterial stiffness.
        J Hypertens. 2005; 23: 2263-2268
        • Higo S.
        • Uematsu M.
        • Yamagishi M.
        • et al.
        Elevation of plasma matrix metalloproteinase-9 in the culprit coronary artery in patients with acute myocardial infarction: Clinical evidence from distal protection.
        Circ J. 2005; 69: 1180-1185
        • Ambrose J.A.
        • Winters S.L.
        • Stern A.
        • et al.
        Angiographic morphology and the pathogenesis of unstable angina pectoris.
        J Am Coll Cardiol. 1985; 5: 609-616
        • Falk E.
        Coronary thrombosis: Pathogenesis and clinical manifestations.
        Am J Cardiol. 1991; 68: 28B-35B
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • et al.
        Novel modulator for endothelial adhesion molecules: Adipocyte-derived plasma protein adiponectin.
        Circulation. 1999; 100: 2473-2476
        • Furukawa K.
        • Hori M.
        • Ouchi N.
        • et al.
        Adiponectin down-regulates acyl-coenzyme A:cholesterol acyltransferase-1 in cultured human monocyte-derived macrophages.
        Biochem Biophys Res Commun. 2004; 317: 831-836
        • Kubota N.
        • Terauchi Y.
        • Yamauchi T.
        • et al.
        Disruption of adiponectin causes insulin resistance and neointimal formation.
        J Biol Chem. 2002; 277: 25863-25866
        • Matsuda M.
        • Shimomura I.
        • Sata M.
        • et al.
        Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis.
        J Biol Chem. 2002; 277: 37487-37491
        • Wolk R.
        • Berger P.
        • Lennon R.J.
        • Brilakis E.S.
        • Davison D.E.
        • Somers V.K.
        Association between plasma adiponectin levels and unstable coronary syndromes.
        Eur Heart J. 2007; 28: 292-298
        • Shin W.S.
        • Szuba A.
        • Rockson S.G.
        The role of chemokines in human cardiovascular pathology: Enhanced biological insights.
        Atherosclerosis. 2002; 160: 91-102
        • Kumada M.
        • Kihara S.
        • Ouchi N.
        • et al.
        Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages.
        Circulation. 2004; 109: 2046-2049
        • Rouis M.
        • Adamy C.
        • Duverger N.
        • et al.
        Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient mice.
        Circulation. 1999; 100: 533-540
        • Moreau M.
        • Brocheriou I.
        • Petit L.
        • Ninio E.
        • Chapman M.J.
        • Rouis M.
        Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: Relevance to stability of atherosclerotic plaque.
        Circulation. 1999; 99: 420-426
        • Inokubo Y.
        • Hanada H.
        • Ishizaka H.
        • Fukushi T.
        • Kamada T.
        • Okumura K.
        Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome.
        Am Heart J. 2001; 141: 211-217
        • Manginas A.
        • Bei E.
        • Chaidaroglou A.
        • Degiannis D.
        • et al.
        Peripheral levels of matrix metalloproteinase-9, interleukin-6, and C-reactive protein are elevated in patients with acute coronary syndromes: Correlations with serum troponin I.
        Clin Cardiol. 2005; 28: 182-186
        • Beaudeux J.L.
        • Giral P.
        • Bruckert E.
        • Bernard M.
        • Foglietti M.J.
        • Chapman M.J.
        Serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 as potential markers of carotid atherosclerosis in infraclinical hyperlipidemia.
        Atherosclerosis. 2003; 169: 139-146
        • Manigrasso M.R.
        • Ferroni P.
        • Santilli F.
        • et al.
        Association between circulating adiponectin and interleukin-10 levels in android obesity: Effects of weight loss.
        J Clin Endocrinol Metab. 2005; 90: 5876-5879