Abstract
Background
Pregnancy is associated with significant cardiac adaptations. The regulatory mechanisms
involved in functional cardiac adaptations during pregnancy are still largely unknown.
In pathologic conditions, mineralocorticoids have been shown to mediate structural
as well as functional remodelling of the heart. However, their role in cardiac physiological
conditions is not completely understood. Here, we examined cardiac cell metabolic
remodelling in the late stages of rat pregnancy, as well as mineralocorticoid involvement
in this regulation.
Methods
We have applied rapid video imaging, echocardiography, patch clamp technique, confocal
microscopy, and time-resolved fluorescence spectroscopy.
Results
Our results revealed that cardiac cells undergo metabolic remodelling in pregnancy.
Inhibition of mineralocorticoid receptors during pregnancy elicited functional alterations
in cardiac cells: blood levels of energy substrates, particularly lactate, were decreased.
As a consequence, the cardiomyocyte contractile response to these substrates was blunted,
without modifications of L-type calcium current density. Interestingly, this response
was associated with changes in the mitochondrial metabolic state, which correlated
with modifications of bound reduced nicotinamide adenine dinucleotide (phosphate)
NAD(P)H levels. We also noted that mineralocorticoid receptor inhibition prevented
pregnancy-induced decrease in transient outward potassium current.
Conclusions
This study demonstrates that in pregnancy, mineralocorticoids contribute to functional
adaptations of cardiac myocytes. By regulating energy substrate levels, in particular
lactate, in the plasma and metabolic state in the cells, mineralocorticoids affect
the contractility responsiveness to these substrates. In the future, understanding
cardiac adaptations during pregnancy will help us to comprehend their pathophysiological
alterations.
Résumé
Introduction
La grossesse est associée à des adaptations cardiaques significatives. Les mécanismes
régulateurs impliqués dans les adaptations cardiaques fonctionnelles durant la grossesse
sont en grande partie encore inconnus. Au cours d'états pathologiques, il a été montré
que les minéralocorticoïdes servaient de médiateur aussi bien dans le remodelage structurel
que dans le remodelage fonctionnel du cœur. Cependant, leur rôle au cours d'états
physiologiques cardiaques n'est pas complètement compris. Ici, nous avons examiné
le remodelage métabolique de la cellule cardiaque dans les dernières étapes de la
grossesse chez la rate, aussi bien que l'implication du minéralocorticoïde dans cette
régulation.
Méthodes
Nous avons appliqué l'imagerie vidéo rapide, l'échocardiographie, la technique du
patch-clamp, la microscopie confocale et la spectroscopie de fluorescence résolue en temps.
Résultats
Nos résultats ont révélé que les cellules cardiaques subissent un remodelage métabolique
durant la grossesse. L'inhibition des récepteurs minéralocorticoïdes durant la grossesse
a provoqué des modifications fonctionnelles dans les cellules cardiaques : les niveaux
sanguins des substrats énergétiques, particulièrement le lactate, ont été diminués.
En conséquence, la réponse contractile des cardiomyocytes à ces substrats a été atténuée,
sans modifications de la densité du courant calcique de type L. De façon intéressante,
cette réponse a été associée aux changements de l'état métabolique des mitochondries,
lequel corrélait avec les modifications des niveaux de nicotinamide adénine dinucléotide
(phosphate) réduit NAD(P)H lié. Nous avons aussi noté que l'inhibition du récepteur
minéralocorticoïde prévenait la diminution induite par la grossesse dans le courant
potassique transitoire sortant.
Conclusions
Cette étude démontre que durant la grossesse, les minéralocorticoïdes contribuent
aux adaptations fonctionnelles des myocytes cardiaques. En régulant les niveaux de
substrats énergétiques, en particulier le lactate, dans le plasma et l'état métabolique
dans les cellules, les minéralocorticoïdes affectent la réponse contractile à ces
substrats. Dans le futur, la compréhension des adaptations cardiaques durant la grossesse
nous aidera à saisir les changements pathophysiologiques.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of CardiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Glucose utilization by interscapular brown adipose tissue in vivo during nutritional transitions in the rat.Biochem J. 1991; 273: 233-235
- Structural, functional and metabolic remodeling of rat left ventricular myocytes in normal and in sodium-supplemented pregnancy.Cardiovasc Res. 2006; 69: 423-431
- Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure.Circ Res. 2003; 93: 69-76
- Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor.Science. 1987; 237: 268-275
- Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats.Hypertension. 2006; 47: 656-664
- RALES, EPHESUS and redox.J Steroid Biochem Mol Biol. 2005; 93: 121-125
- Aldosterone-induced inflammation in the rat heart: role of oxidative stress.Am J Pathol. 2002; 161: 1773-1781
- NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat.Hypertension. 2001; 38: 1107-1111
- Mineralocorticoid receptor is involved in the regulation of genes responsible for hepatic glucose production.Biochem Biophys Res Commun. 2006; 342: 1291-1296
- Effects of anesthetics and starvation on in vivo gluconeogenesis in virgin and pregnant rats.Metabolism. 1984; 33: 553-558
- High affinity aldosterone binding sites (type I receptors) in rat heart.Clin Exp Pharmacol Physiol. 1987; 14: 859-866
- NADH measurements in adult rat myocytes during simulated ischemia.Am J Physiol. 1991; 260: H1743-H1752
- Excitation-contraction coupling in single guinea-pig ventricular myocytes exposed to hydrogen peroxide.J Physiol. 1994; 477: 135-147
- Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues.Laser Phys Lett. 2009; 6: 175-193
- Rejection of transplanted hearts in patients evaluated by the component analysis of multi-wavelength NAD(P)H fluorescence lifetime spectroscopy.J Biophotonics. 2010; 3: 646-652
- Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH.Cancer Res. 2005; 65: 8766-8773
- Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence.Chemphyschem. 2004; 5: 1141-1149
- Functional properties of K+ currents in adult mouse ventricular myocytes.J Physiol. 2004; 559: 777-798
- Lactate movements in the term human placenta in situ.Biol Neonate. 1990; 58: 61-68
- Carrier-mediated L-lactate transport in brush-border membrane vesicles from rat placenta during late gestation.Biochem J. 1991; 278: 535-541
- Myocardial glucose and lactate metabolism during rest and atrial pacing in humans.J Physiol. 2009; 587: 2087-2099
- Pyruvate: metabolic protector of cardiac performance.Proc Soc Exp Biol Med. 2000; 223: 136-148
- Glutathione and K(+) channel remodeling in postinfarction rat heart.Am J Physiol Heart Circ Physiol. 2002; 282: H2346-H2355
- Electrophysiological remodeling in hypertrophy and heart failure.Cardiovasc Res. 1999; 42: 270-283
- Molecular and functional signature of heart hypertrophy during pregnancy.Circ Res. 2005; 96: 1208-1216
- Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction.Circulation. 2004; 110: 776-783
Article info
Publication history
Published online: September 12, 2011
Accepted:
May 12,
2011
Received:
February 22,
2011
Footnotes
See page 841 for disclosure information.
Identification
Copyright
© 2011 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.