Advertisement
Basic research| Volume 27, ISSUE 6, P818-825, November 2011

Download started.

Ok

Magnetic Resonance Evaluation of Transplanted Mesenchymal Stem Cells After Myocardial Infarction in Swine

Published:October 24, 2011DOI:https://doi.org/10.1016/j.cjca.2011.07.633

      Abstract

      Introduction

      Our objective was to trace and evaluate intracoronary transplanted mesenchymal stem cells (MSCs) labelled with superparamagnetic iron oxide (SPIO) by using magnetic resonance imaging (MRI) in a swine model of myocardial infarction (MI).

      Methods

      MSCs were transfected with a lentiviral vector carrying the gene encoding green fluorescent protein (GFP) and labelled in vitro with SPIO. At 2 weeks after MI, swine were randomized to intracoronary transplantation of dual-labelled MSCs (n = 10), MSC-GFP (n = 10), and saline (n = 5). MRI examination was performed with a 1.5-T clinical scanner at 24 hours, 3 weeks, and 8 weeks after cell transplantation. Signal intensity changes, cardiac function, and MI size were measured by means of MRI. The correlation between MRI findings and histomorphologic findings was also investigated.

      Results

      MSCs could be efficiently and safely labelled with SPIO and GFP, and multipotentiality was not affected, especially for cardiomyocyte-like cell differentiation. Signal intensity on T2*-weighted imaging decreased substantially in the interventricular septum 24 hours after injection of MSCs. The intensity of hypointense signals appeared to increase throughout the later time points. Both dual-labelled MSCs and MSC-GFP could dramatically reduce the size of MI and improve cardiac function. Histologic data revealed that cells positive for Prussian blue stain were found mainly in the border zone, which also showed green fluorescence.

      Conclusions

      In vivo 8-week tracing of dual-labelled MSCs can be achieved by MRI. Intracoronary transplantation of dual-labelled MSCs can increase cardiac function and reduce the size of MI in a swine model.

      Résumé

      Introduction

      Notre objectif était de tracer et d'évaluer les transplantations intracoronariennes de cellules souches mésenchymateuses (CSM) marquées par l'oxyde de fer superparamagnétique (SPIO: superparamagnetic iron oxide) en utilisant l'imagerie par résonance magnétique (IRM) appliquée à un modèle porcin d'infarctus du myocarde (IM).

      Méthodes

      Les CSM ont été transfectées par un vecteur lentiviral transportant le gène codant pour la protéine verte fluorescente (GFP: green fluorescent protein) et marqué in vitro au SPIO. Deux (2) semaines après l'IM, le porc a été choisi de façon aléatoire pour une transplantation intracoronarienne de CSM doublement marquées (n = 10), CSM-GFP (n = 10) et de solution saline (n = 5). L'examen par IRM a été fait par un dispositif de balayage clinique 1,5-T à 24 heures, trois (3) semaines et huit (8) semaines après la transplantation de cellules. Les changements d'intensité du signal, la fonction cardiaque et la taille de l'IM ont été mesurés au moyen de l'IRM. La corrélation entre les découvertes par l'IRM et les découvertes histomorphologiques ont aussi été examinée.

      Résultats

      Les CSM ont pu être marquées de manière efficace et sécuritaire au SPIO et à la GFP, et la multipotentialité n'a pas été perturbée, spécialement pour la différenciation de la cellule ressemblant aux cardiomyocytes. L'intensité du signal sur l'image pondérée en T2* a substantiellement diminué dans la cloison interventriculaire 24 heures après l'injection de CSM. L'intensité des signaux hypo-intenses a semblé augmenter dans les données les plus tardives. Les CSM ainsi que les CSM-GFP doublement marquées pourraient remarquablement réduire la taille de l'IM et améliorer la fonction cardiaque. Les données histologiques ont révélé que les cellules qui avaient obtenu une coloration positive au bleu de Prusse ont été trouvées principalement dans la zone marginale, laquelle a aussi montré une fluorescence verte.

      Conclusion

      Le tracé à huit (8) semaines in vivo des CSM doublement marquées peut être atteint par l'IRM. La transplantation intracoronarienne de CSM doublement marquées peut augmenter la fonction cardiaque et réduire la taille de l'IM à un modèle porcin.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wu J.C.
        • Abraham M.R.
        • Kraitchman D.L.
        Current perspectives on imaging cardiac stem cell therapy.
        J Nucl Med. 2010; 51: 128-136
        • Laflamme M.A.
        • Murry C.E.
        Regenerating the heart.
        Nat Biotechnol. 2005; 23: 845-856
        • Wollert K.C.
        • Drexler H.
        Clinical applications of stem cells for the heart.
        Circ Res. 2005; 96: 151-163
        • Song Y.S.
        • Ku J.H.
        • Song E.S.
        • et al.
        Magnetic resonance evaluation of human mesenchymal stem cells in corpus cavernosa of rats and rabbits.
        Asian J Androl. 2007; 9: 361-367
        • Bulte J.W.
        • Duncan I.D.
        • Frank J.A.
        In vivo magnetic resonance tracking of magnetically labeled cells after transplantation.
        J Cereb Blood Flow Metab. 2002; 22: 899-907
        • Son K.R.
        • Chung S.Y.
        • Kim H.C.
        • et al.
        MRI of magnetically labeled mesenchymal stem cells in hepatic failure model.
        World J Gastroenterol. 2010; 16: 5611-5615
        • Yoo J.H.
        • Park C.
        • Jung D.I.
        • et al.
        In vivo cell tracking of canine allogenic mesenchymal stem cells administration via renal arterial catheterization and physiopathological effects on the kidney in two healthy dogs.
        J Vet Med Sci. 2010; 12: 269-274
        • Cheng J.L.
        • Yang Y.J.
        • Li H.L.
        • Wang J.
        • Wang M.H.
        • Zhang Y.
        In vivo tracing of superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells transplanted for traumatic brain injury by susceptibility weighted imaging in a rat model.
        Chin J Traumatol. 2010; 13: 173-177
        • Wang H.H.
        • Wang Y.X.
        • Leung K.C.
        • et al.
        Durable mesenchymal stem cell labelling by using polyhedral superparamagnetic iron oxide nanoparticles.
        Chemistry. 2009; 15: 12417-12425
        • Majumdar M.K.
        • Keane-Moore M.
        • Buyaner D.
        • et al.
        Characterization and functionality of cell surface molecules on human mesenchymal stem cells.
        J Biomed Sci. 2003; 10: 228-241
        • Le Blanc K.
        • Tammik C.
        • Rosendahl K.
        • Zetterberg E.
        • Ringdén O.
        HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells.
        Exp Hematol. 2003; 31: 890-896
        • Di Nicola M.
        • Carlo-Stella C.
        • Magni M.
        • et al.
        Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.
        Blood. 2002; 99: 3838-3843
        • He G.
        • Zhang H.
        • Wei H.
        • et al.
        In vivo imaging of bone marrow mesenchymal stem cells transplanted into myocardium using magnetic resonance imaging: a novel method to trace the transplanted cells.
        Int J Cardiol. 2007; 114: 4-10
        • Frank J.A.
        • Zywicke H.
        • Jordan E.K.
        • et al.
        Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents.
        Acad Radiol. 2002; 9: 484-487
        • Arbab A.S.
        • Bashaw L.A.
        • Miller B.R.
        • et al.
        Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging.
        Radiology. 2003; 229: 838-846
        • Arbab A.S.
        • Yocum G.T.
        • Kalish H.
        • et al.
        Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI.
        Blood. 2004; 104: 1217-1223
        • Kostura L.
        • Kraitchman D.L.
        • Mackay A.M.
        • Pittenger M.F.
        • Bulte J.W.
        Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis.
        NMR Biomed. 2004; 17: 513-517
        • Beek A.M.
        • Kühl H.P.
        • Bondarenko O.
        • et al.
        Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction.
        J Am Coll Cardiol. 2003; 42: 895-901
        • Reddy A.M.
        • Kwak B.K.
        • Shim H.J.
        • et al.
        In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticles using 3.0T MRI.
        J Korean Med Sci. 2010; 25: 211-219
        • Jing X.H.
        • Yang L.
        • Duan X.J.
        • et al.
        In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection.
        Joint Bone Spine. 2008; 75: 432-438
        • Daldrup-Link H.E.
        • Rudelius M.
        • Piontek G.
        • et al.
        Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment.
        Radiology. 2005; 234: 197-205
        • Loebinger M.R.
        • Kyrtatos P.G.
        • Turmaine M.
        • et al.
        Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles.
        Cancer Res. 2009; 69: 8862-8867
        • Evgenov N.V.
        • Medarova Z.
        • Pratt J.
        • et al.
        In vivo imaging of immune rejection in transplanted pancreatic islets.
        Diabetes. 2006; 55: 2419-2428
        • Kriz J.
        • Jirák D.
        • Girman P.
        • et al.
        Magnetic resonance imaging of pancreatic islets in tolerance and rejection.
        Transplantation. 2005; 80: 1596-1603
        • Tang Y.L.
        • Zhao Q.
        • Qin X.
        • et al.
        Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction.
        Ann Thorac Surg. 2005; 80: 229-236
        • Kajstura J.
        • Rota M.
        • Whang B.
        • et al.
        Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion.
        Circ Res. 2005; 96: 127-137
        • Mangi A.A.
        • Noiseux N.
        • Kong D.
        • et al.
        Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.
        Nat Med. 2003; 9: 1195-1201
        • Nygren J.M.
        • Jovinge S.
        • Breitbach M.
        • et al.
        Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation.
        Nat Med. 2004; 10: 494-501
        • He A.
        • Jiang Y.
        • Gui C.
        • Sun Y.
        • Li J.
        • Wang J.A.
        The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning.
        Can J Cardiol. 2009; 25: 353-358
        • Fraidenraich D.
        • Stillwell E.
        • Romero E.
        • et al.
        Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells.
        Science. 2004; 306: 247-252