Canadian Journal of Cardiology

Reduced Endoplasmic Reticulum Stress Might Alter the Course of Heart Failure Via Caspase-12 and JNK Pathways

Published:November 08, 2013DOI:



      Endoplasmic reticulum (ER) stress plays an important role in mediating ischemic heart cell death. The aim of this study was to investigate whether manipulation of a key factor of the ER stress pathway, eukaryotic translation initiation factor 2 subunit α (eIF2α), can change the natural history of heart failure (HF).


      HF was induced using coronary artery ligation in adult rats and a selective eIF2α dephosphorylation inhibitor, salubrinal (Sal), was used. Thirty minutes after ligation, rats were randomly assigned to 3 groups: myocardial infarction (MI) plus placebo injections (dimethyl sulfoxide; n = 12), MI plus Sal injection (Sal; n = 12), and MI (HF; n = 12). Hemodynamic parameters were examined. Hearts were harvested for apoptosis assessment after 8 weeks of Sal treatment by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labelling and flow cytometric analysis. Hearts were harvested to determine ER chaperones by Western analysis, real-time polymerase chain reaction and immunohistochemical analysis.


      Cardiac function was significantly improved in Sal-treated rats. Apoptosis was reduced by Sal treatment. Glucose-regulated protein-78 and -94 were increased in HF but normalized by Sal treatment. HF caused a significant increase in eIF2α phosphorylation, which was further increased by Sal treatment, and caspase-12 and phospho-c-JUN NH2-terminal kinase were markedly increased in rats with HF alone but significantly reduced by Sal treatment.


      Our results suggest that reduction of ER stress and myocardial apoptosis through inhibition of eIF2α dephosphorylation might alter the natural history of HF, which might provide a new approach for its treatment.



      Le stress du réticulum endoplasmique (RE) joue un rôle important de médiation de la mort des cellules cardiaques lors de l’ischémie. Le but de cette étude était d’examiner si la manipulation d’un facteur principal de la voie du stress du RE, la sous-unité α du facteur d’initiation de la traduction eucaryote 2 (eIF2α), peut changer l’évolution naturelle de l’insuffisance cardiaque (IC).


      L’IC a été induite par la ligature de l’artère coronaire chez des rats adultes, et un inhibiteur sélectif de la déphosphorylation du eIF2α, le salubrinal (Sal), a été utilisé. Trente (30) minutes après la ligature, les rats ont été répartis de manière aléatoire en 3 groupes : l’infarctus du myocarde (IM) plus les injections de placébo (diméthylsulfoxyde; n = 12), l’IM plus l’injection de Sal (Sal; n = 12) et l’IM (IC; n = 12). Les paramètres hémodynamiques ont été examinés. Les cœurs ont été prélevés pour procéder à l'évaluation de l'apoptose après 8 semaines de traitements au Sal par le marquage de la cassure d'un brin d'extrémité à la déoxyuridine triphosphate et l'analyse de cytométrie de flux. Les cœurs ont été prélevés et les chaperonnes du RE ont été déterminées par l’analyse du buvardage de western, la réaction en chaîne de la polymérase en temps réel et l’analyse immunohistochimique.


      La fonction cardiaque a été améliorée de façon significative chez les rats traités au Sal. L’apoptose a été réduite par le traitement au Sal. Les protéines 78 et 94 régulées par le glucose ont augmenté lors de l’IC, mais se sont normalisées à la suite du traitement au Sal. L’IC a causé une augmentation significative de la phosphorylation du eIF2α, qui a été davantage accrue par le traitement au Sal, puis la caspase 12 et la protéine JNK ont nettement augmenté chez les rats ayant une IC seule, mais ont significativement été réduites à la suite du traitement au Sal.


      Nos résultats montrent que la réduction du stress du RE et de l’apoptose myocardique par l’inhibition de la déphosphorylation du eIF2α modifierait l’évolution naturelle de l’IC, ce qui offrirait une nouvelle approche pour son traitement.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Kaufman R.J.
        Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls.
        Genes Dev. 1999; 13: 1211-1233
        • Ron D.
        Translational control in the endoplasmic reticulum stress response.
        J Clin Invest. 2002; 110: 1383-1388
        • Schroder M.
        • Kaufman R.J.
        The mammalian unfolded protein response.
        Annu Rev Biochem. 2005; 74: 739-789
        • Patil C.
        • Walter P.
        Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals.
        Curr Opin Cell Biol. 2001; 13: 349-355
        • Seimon T.A.
        • Kim M.J.
        • Blumenthal A.
        • et al.
        Induction of ER stress in macrophages of tuberculosis granulomas.
        PLoS One. 2010; 5: e12772
        • Kaufman R.J.
        Orchestrating the unfolded protein response in health and disease.
        J Clin Invest. 2002; 110: 1389-1398
        • George I.
        • Sabbah H.N.
        • Xu K.
        • Wang N.
        • Wang J.
        β-Adrenergic receptor blockade reduces endoplasmic reticulum stress and normalizes calcium handling in a coronary embolization model of heart failure in canines.
        Cardiovasc Res. 2011; 91: 447-455
        • Okada K.I.
        • Minamino T.
        • Tsukamoto Y.
        • et al.
        Stress to cardiac myocyte apoptosis after aortic constriction: possible contribution of endoplasmic reticulum prolonged endoplasmic reticulum stress in hypertrophic and failing heart.
        Circulation. 2004; 110: 705-712
        • Oyadomari S.
        • Araki E.
        • Mori M.
        Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells.
        Apoptosis. 2002; 7: 335-345
        • Li L.
        • Hu B.C.
        • Gong S.J.
        • Yan J.
        Homocysteine-induced caspase-3 activation by endoplasmic reticulum stress in endothelial progenitor cells from patients with coronary heart disease and healthy donors.
        Biosci Biotechnol Biochem. 2011; 75: 1300-1305
        • Zbidi H.
        • Redondo P.C.
        • López J.J.
        • et al.
        Homocysteine induces caspase activation by endoplasmic reticulum stress in platelets from type 2 diabetics and healthy donors.
        Thromb Haemost. 2010; 103: 1022-1032
        • Chaanine A.H.
        • Gordon R.E.
        • Kohlbrenner E.
        • et al.
        Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: mitochondrial calcium homeostasis in diastolic and systolic heart failure.
        Circ Heart Fail. 2013; 6: 572-583
        • Takada A.
        • Miki T.
        • Kuno A.
        • et al.
        Role of ER stress in ventricular contractile dysfunction in type 2 diabetes.
        PloS One. 2012; 7: e39893
        • Kubisch C.H.
        • Sans M.D.
        • Arumugam T.
        • et al.
        Early activation of endoplasmic reticulum stress is associated with arginine-induced acute pancreatitis.
        Am J Physiol Gastrointest Liver Physiol. 2006; 291: G238-G245
        • Boyce M.
        • Bryant K.F.
        • Jousse C.
        • et al.
        A selective inhibitor of eIF2a dephosphorylation protects cells from ER stress.
        Science. 2005; 307: 935-939
        • Sokka A.L.
        • Putkonen N.
        • Mudo G.
        • et al.
        Endoplasmic reticulum stress inhibition protects against excito-toxic neuronal injury in the rat brain.
        J Neurosci. 2007; 27: 901-908
        • Nakka V.P.
        • Gusain A.
        • Raghubir R.
        Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats.
        Neurotox Res. 2010; 17: 189-202
        • Bassand J.P.
        • Danchin N.
        • Filippatos G.
        • et al.
        Implementation of reperfusion therapy in acute myocardial infarction. A policy statement from the European Society of Cardiology.
        Eur Heart J. 2005; 24: 2733-2741
        • McKelvie R.S.
        • Moe G.W.
        • Ezekowitz J.A.
        • et al.
        The 2012 Canadian Cardiovascular Society heart failure management guidelines update: focus on acute and chronic heart failure.
        Can J Cardiol. 2013; 29: 168-181
        • Harding H.P.
        • Ron D.
        Endoplasmic reticulum stress and the development of diabetes: a review.
        Diabetes. 2002; 51: S455-S461
        • Cnop M.
        • Ladriere L.
        • Hekerman P.
        • et al.
        Selective inhibition of eukaryotic translation initiation factor 2 dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic β-cell dysfunction and apoptosis.
        J Biol Chem. 2007; 282: 3989-3997
        • Dorn II, G.W.
        Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling.
        Cardiovasc Res. 2009; 81: 465-473
        • Lee Y.
        • Gustafsson A.B.
        Role of apoptosis in cardiovascular disease.
        Apoptosis. 2009; 14: 536-548
        • Kitakaze M.
        • Tsukamoto O.
        What is the role of ER stress in the heart? Introduction and series overview.
        Circ Res. 2010; 107: 15-18
        • Minamino T.
        • Kitakaze M.
        ER stress in cardiovascular disease.
        J Mol Cell Cardiol. 2010; 48: 1105-1110
        • Rao R.V.
        • Ellerby H.M.
        • Bredesen D.E.
        Coupling endoplasmic reticulum stress to the cell death program.
        Cell Death Differ. 2004; 11: 372-380
        • Harding H.P.
        • Novoa I.
        • Zhang Y.
        • et al.
        Regulated translation initiation controls stress-induced gene expression in mammalian cells.
        Mol Cell. 2000; 6: 1099-1108
        • Latreille M.
        • Larose L.
        Nck in a complex containing the catalytic subunit of protein phosphatase 1 regulates eukaryotic initiation factor 2α signaling and cell survival to endoplasmic reticulum stress.
        J Biol Chem. 2006; 281: 26633-26644
        • Cook A.R.
        • Bardswell S.C.
        • Pretheshan S.
        • et al.
        Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: a role for ER stress?.
        J Mol Cell Cardiol. 2009; 46: 225-233
        • Scheuner D.
        • Patel R.
        • Wang F.
        • et al.
        Double-stranded RNA-dependent protein kinase phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 mediates apoptosis.
        J Biol Chem. 2006; 281: 21458-21468
        • Ferri K.F.
        • Kroemer G.
        Organelle-specific initiation of cell death pathways.
        Nat Cell Biol. 2001; 3: E255-E263
        • Nakagawa T.
        • Zhu H.
        • Morishima N.
        • et al.
        Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta.
        Nature. 2000; 403: 98-103
        • Ip Y.T.
        • Davis R.J.
        Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development.
        Curr Opin Cell Biol. 1998; 10: 205-219
        • Preuss C.
        • Andelnger G.
        Genetics of heart failure in congenital heart disease.
        Can J Cardiol. 2013; 29: 803-810
        • Urano F.
        • Wang X.Z.
        • Bertolotti A.
        • et al.
        Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1.
        Science. 2000; 287: 664-666
        • McCullough K.D.
        • Martindale J.L.
        • Klotz L.O.
        • Aw T.Y.
        • Holbrook N.J.
        Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state.
        Mol Cell Biol. 2001; 21: 1249-1259
        • Wang X.Z.
        • Lawson B.
        • Brewer J.W.
        • et al.
        Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153).
        Mol Cell Biol. 1996; 16: 4273-4280