Canadian Journal of Cardiology

The Mammalian Target of Rapamycin Signalling Pathway Is Involved in Osteoblastic Differentiation of Vascular Smooth Muscle Cells

Published:November 11, 2013DOI:



      Vascular calcification is a major risk factor for cardiovascular diseases. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) is a key step in vascular calcification, but the molecular mechanisms driving the differentiation remain elusive. In this study, the involvement of mammalian target of rapamycin (mTOR) signalling in osteoblastic differentiation of VSMCs is investigated.


      Calcification of VSMCs was induced in vitro using β-glycerophosphate (β-GP). Real-time polymerase chain reaction was used to measure messenger RNA (mRNA) expression, and Western blot was used to detect protein expression. Inhibition of mTOR expression was established by small interfering RNA (siRNA) and mTOR inhibitors.


      The model for osteoblastic differentiation of VSMCs was established in vitro by treating mouse VSMCs with 10 mM β-GP for 3-15 days. Overexpression of mTOR was observed in differentiated VSMCs. Downregulation of mTOR by siRNA or rapamycin significantly inhibited osteoblastic differentiation of VSMCs and decreased the expression and phosphorylation of mTOR and P70 ribosomal S6 kinase in a time- and concentration-dependent manner. Furthermore, adiponectin inhibited the mRNA and protein expression of mTOR in β-GP-treated VSMCs in a time- and concentration-dependent manner.


      mTOR signalling plays a crucial role in the osteoblastic differentiation of VSMCs. Rapamycin and adiponectin might inhibit vascular calcification through regulation of the mTOR pathway.



      La calcification vasculaire est un facteur de risque majeur de maladies cardiovasculaires. La différenciation ostéoblastique des cellules musculaires lisses vasculaires (CMLV) est une étape essentielle à la calcification vasculaire, mais les mécanismes moléculaires soutenant la différenciation demeurent imprécis. Dans cette étude, la participation de la voie de signalisation de la cible de la rapamycine chez les mammifères (mTOR : mammalian target of rapamycin) à la différenciation ostéoblastique des CMLV est examinée.


      La calcification des CMLV a été induite in vitro par la β-glycérophosphate (β-GP). La réaction en chaîne de la polymérase en temps réel a été utilisée pour mesurer l’expression de l’ARN messager (ARNm) et le buvardage de Western a été utilisé pour détecter l’expression de protéines. L’inhibition de l’expression de la mTOR a été établie par les inhibiteurs de l'ARN de petite taille (ARNsi) et de la mTOR.


      Le modèle de différenciation ostéoblastique des CMLV a été établi in vitro en traitant les CMLV de souris par 10 mmol de β-GP durant 3 à 15 jours. La surexpression de la mTOR a été observée dans les CMLV différenciées. La régulation à la baisse de la mTOR par l’ARNsi ou la rapamycine a significativement inhibé la différenciation ostéoblastique des CMLV, et a diminué l’expression et la phosphorylation de la mTOR et de la protéine kinase S6 ribosomique P70 selon le temps et la concentration. De plus, l’adiponectine a inhibé l’ARNm et l’expression de la protéine de la mTOR dans les CMLV traitées par la β-GP selon le temps et la concentration.


      La voie de signalisation de la mTOR joue un rôle crucial dans la différenciation des CMLV. La rapamycine et l’adiponectine inhiberaient la calcification vasculaire par la régulation de la voie de la mTOR.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Nakano-Kurimoto R.
        • Ikeda K.
        • Uraoka M.
        • et al.
        Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition.
        Am J Physiol Heart Circ Physiol. 2009; 297: H1673-H1684
        • Giachelli C.M.
        Vascular calcification mechanisms.
        J Am Soc Nephrol. 2004; 15: 2959-2964
        • Ciceri P.
        • Volpi E.
        • Brenna I.
        • et al.
        Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation.
        Nephrol Dial Transplant. 2012; 27: 122-127
        • Zavaczki E.
        • Jeney V.
        • Agarwal A.
        • et al.
        Hydrogen sulfide inhibits the calcification and osteoblastic differentiation of vascular smooth muscle cells.
        Kidney Int. 2011; 80: 731-739
        • Giachelli C.M.
        • Speer M.Y.
        • Li X.
        • Rajachar R.M.
        • Yang H.
        Regulation of vascular calcification: roles of phosphate and osteopontin.
        Circ Res. 2005; 96: 717-722
        • Lauring J.
        • Park B.H.
        • Wolff A.C.
        The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer.
        J Natl Compr Canc Netw. 2013; 11: 670-678
        • Hay N.
        • Sonenberg N.
        Upstream and downstream of mTOR.
        Genes Dev. 2004; 18: 1926-1945
        • Sun H.
        • Kim J.K.
        • Mortensen R.M.
        • et al.
        Osteoblast-targeted suppression of PPARγ increases osteogenesis through activation of mTOR signaling.
        Stem Cells. 2013; 31: 2183-2192
        • Yeh L.C.
        • Ma X.
        • Ford J.J.
        • Adamo M.L.
        • Lee J.C.
        Rapamycin inhibits BMP-7-induced osteogenic and lipogenic marker expressions in fetal rat calvarial cells.
        J Cell Biochem. 2013; 114: 1760-1771
        • Pantovic A.
        • Krstic A.
        • Janjetovic K.
        • et al.
        Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells.
        Bone. 2013; 52: 524-531
        • Tarantino G.
        • Capone D.
        Inhibition of the mTOR pathway: a possible protective role in coronary artery disease.
        Ann Med. 2013; 45: 348-356
        • Caramés B.
        • Hasegawa A.
        • Taniguchi N.
        • et al.
        Autophagy activation by rapamycin reduces severity of experimental osteoarthritis.
        Ann Rheum Dis. 2012; 71: 575-581
        • Linford N.J.
        • Beyer R.P.
        • Gollahon K.
        • et al.
        Transcriptional response to aging and caloric restriction in heart and adipose tissue.
        Aging Cell. 2007; 6: 673-688
        • Grundmann S.
        • Hans F.P.
        • Kinniry S.
        • et al.
        MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells.
        Circulation. 2011; 123: 999-1009
        • Fingar D.C.
        • Blenis J.
        Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression.
        Oncogene. 2004; 23: 3151-3171
        • Tato I.
        • Bartrons R.
        • Ventura F.
        • Rosa J.L.
        Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling.
        J Biol Chem. 2011; 286: 6128-6142
        • Corradetti M.N.
        • Guan K.L.
        Upstream of the mammalian target of rapamycin: do all roads pass through mTOR?.
        Oncogene. 2006; 25: 6347-6360
        • Marks A.R.
        Rapamycin: signaling in vascular smooth muscle.
        Transplant Proc. 2003; 35: 231S-233S
        • Kershaw E.E.
        • Flier J.S.
        Adipose tissue as an endocrine organ.
        J Clin Endocrinol Metab. 2004; 89: 2548-2556
        • Luo X.H.
        • Zhao L.L.
        • Yuan L.Q.
        • et al.
        Development of arterial calcification in adiponectin-deficient mice: adiponectin regulates arterial calcification.
        J Bone Miner Res. 2009; 24: 1461-1468
        • Campbell J.H.
        • Campbell G.R.
        Culture techniques and their applications to studies of vascular smooth muscle.
        Clin Sci (Lond). 1993; 85: 501-513
        • Gregory C.A.
        • Gunn W.G.
        • Peister A.
        • Prockop D.J.
        An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction.
        Anal Biochem. 2004; 329: 77-84
        • Luo X.H.
        • Guo L.J.
        • Xie H.
        • et al.
        Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts via the MAPK signaling pathway.
        J Bone Miner Res. 2006; 21: 1648-1656
        • Liang Q.H.
        • Jiang Y.
        • Zhu X.
        • et al.
        Ghrelin attenuates the osteoblastic differentiation of vascular smooth muscle cells through the ERK pathway.
        PLoS One. 2012; 7: e33126
        • Shan P.F.
        • Lu Y.
        • Cui R.R.
        • et al.
        Apelin attenuates the osteoblastic differentiation of vascular smooth muscle cells.
        PLoS One. 2011; 6: e17938
        • Li G.Z.
        • Jiang W.
        • Zhao J.
        • et al.
        Ghrelin blunted vascular calcification in vivo and in vitro in rats.
        Regul Pept. 2005; 129: 167-176
        • Abedin M.
        • Tintut Y.
        • Demer L.L.
        Vascular calcification: mechanisms and clinical ramifications.
        Arterioscler Thromb Vasc Biol. 2004; 24: 1161-1170
        • Shioi A.
        • Nishizawa Y.
        • Jono S.
        • et al.
        Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells.
        Arterioscler Thromb Vasc Biol. 1995; 15: 2003-2009
        • Li J.
        • Zhang B.
        • Huang Z.
        • et al.
        Taurine prevents beta-glycerophosphate-induced calcification in cultured rat vascular smooth muscle cells.
        Heart Vessels. 2004; 19: 125-131
        • Dai Z.J.
        • Gao J.
        • Ma X.B.
        • et al.
        Antitumor effects of rapamycin in pancreatic cancer cells by inducing apoptosis and autophagy.
        Int J Mol Sci. 2012; 14: 273-285
        • Marx S.O.
        • Marks A.R.
        Bench to bedside: the development of rapamycin and its application to stent restenosis.
        Circulation. 2001; 104: 852-855
        • Maahs D.M.
        • Ogden L.G.
        • Kinney G.L.
        • et al.
        Low plasma adiponectin levels predict progression of coronary artery calcification.
        Circulation. 2005; 111: 747-753
        • Kadowaki T.
        • Yamauchi T.
        Adiponectin and adiponectin receptors.
        Endocr Rev. 2005; 26: 439-451
        • Barb D.
        • Neuwirth A.
        • Mantzoros C.S.
        • Balk S.P.
        Adiponectin signals in prostate cancer cells through Akt to activate the mammalian target of rapamycin pathway.
        Endocr Relat Cancer. 2007; 14: 995-1005
        • Yamauchi T.
        • Kamon J.
        • Ito Y.
        • et al.
        Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.
        Nature. 2003; 423: 762-769
        • Cheng S.W.
        • Fryer L.G.
        • Carling D.
        • Shepherd P.R.
        Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status.
        Biol Chem. 2004; 279: 15719-15722
        • Inoki K.
        • Zhu T.
        • Guan K.L.
        TSC2 mediates cellular energy response to control cell growth and survival.
        Cell. 2003; 115: 577-590