Advertisement
Canadian Journal of Cardiology

Destination Therapy With Left Ventricular Assist Devices: For Whom and When?

  • Liane F. Porepa
    Affiliations
    Department of Cardiovascular Medicine, Kaufman Center for Heart Failure Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
    Search for articles by this author
  • Randall C. Starling
    Correspondence
    Corresponding author: Dr Randall C. Starling, Department of Cardiovascular Medicine, 9500 Euclid Avenue, Desk J3-4, Cleveland Clinic, Cleveland, Ohio 44195, USA. Tel.: +1-216-444-2268.
    Affiliations
    Department of Cardiovascular Medicine, Kaufman Center for Heart Failure Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
    Search for articles by this author
Published:January 02, 2014DOI:https://doi.org/10.1016/j.cjca.2013.12.017

      Abstract

      Historically, cardiac transplantation is the only definitive therapy for mortality reduction, symptom reduction, and improved quality of life in advanced heart failure. Because of improvement in cardiovascular care there is now a growing number of patients such as the elderly and those with abundant comorbidity who are not eligible for cardiac transplant. Durable mechanical circulatory support is the new reality in the treatment of advanced heart failure in this population subset. The left ventricular assist device (LVAD) has evolved from humble origins as a short-term extracorporeal and pulsatile device into a durable intracorporeal continuous flow device capable of providing permanent support in the form of destination therapy (DT) LVAD. Data gathered from original landmark clinical trials including Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH), and the Heart Mate II Trial, and the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) provide insight into the type of patient and the timing in which to consider DT LVAD therapy. There are a number individual patient warning signs and symptoms that predate clinical decline; thus, identifying individuals who might benefit from a DT LVAD strategy. The adverse event burden that accompanies DT LVAD therapy cannot be ignored when considering LVAD as an adjunct to ongoing medical therapy. Trends in patient selection regarding mechanical circulatory support continue to evolve along with the technology. As more clinical outcome data are gathered we will continue to refine our patient selection criteria and timing of implant.

      Résumé

      Traditionnellement, la transplantation cardiaque est le seul traitement définitif qui permet la réduction de la mortalité, la réduction des symptômes et l’amélioration de la qualité de vie lors d’insuffisance cardiaque avancée. En raison de l’amélioration des soins cardiovasculaires, il existe maintenant un nombre croissant de patients telles les personnes âgées et les personnes ayant de nombreuses comorbidités qui ne sont pas admissibles à la transplantation cardiaque. L’assistance circulatoire mécanique durable est la nouvelle réalité du traitement de l’insuffisance cardiaque avancée pour traiter ce sous-ensemble de la population. Le dispositif d’assistance ventriculaire gauche (DAVG) qui à l’origine n’était qu’un dispositif pulsatile extracorporel à court terme est devenu un dispositif intracorporel à débit continu durable capable de fournir une assistance permanente sous forme de DAVG en traitement définitif (TD). Les données qui ont été recueillies dans des essais cliniques originaux marquants incluant l’étude REMATCH (Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure), l’essai du Heart Mate II et le registre INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) donnent un aperçu du type de patients et du moment propice où considérer le DVAG en TD. Il existe chez les patients de nombreux signes et symptômes précurseurs individuels qui sont antérieurs au déclin clinique, ce qui par conséquent identifie les individus qui pourraient profiter de la stratégie du DAVG en TD. Le fardeau des événements indésirables qui accompagne le TD par DAVG ne peut être ignoré lorsque l’on considère le DAVG comme un complément au traitement médical en cours. Les tendances dans la sélection des patients concernant l’assistance circulatoire mécanique continuent à évoluer parallèlement à la technologie. Lorsque plus de données sur les résultats cliniques seront recueillies, nous continuerons d’affiner nos critères concernant la sélection des patients et la détermination du moment propice à l’implantation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Writing Group Members
        • Lloyd-Jones D.
        • Adams R.J.
        • et al.
        Heart disease and stroke statistics–2010 update: a report from the American Heart Association.
        Circulation. 2010; 121: e46-e215
        • McMurray J.J.
        • Petrie M.C.
        • Murdoch D.R.
        • Davie A.P.
        Clinical epidemiology of heart failure: public and private health burden.
        Eur Heart J. 1998; 19: P9-16
      1. Canadian Institute for Health Information. 2010; Table 1A: Transplants, by Organ and Donor Type, Province of Treatment, Canada. Available at: http://www.cihi.ca/CIHI-ext-portal/pdf/internet/REPORT_STATS2010_PDF_EN. (Accessed August 16, 2013).

        • Slaughter M.S.
        • Rogers J.G.
        • Milano C.A.
        • et al.
        Advanced heart failure treated with continuous-flow left ventricular assist device.
        N Engl J Med. 2009; 361: 2241-2251
        • Roger V.L.
        • Go A.S.
        • Lloyd-Jones D.M.
        • et al.
        Heart disease and stroke statistics–2011 update: a report from the American Heart Association.
        Circulation. 2011; 123 ([errata in 2011;123:e240 and 2011;124:e426]): e18-e209
        • Rogers J.G.
        • Bostic R.R.
        • Tong K.B.
        • et al.
        Cost-effectiveness analysis of continuous-flow left ventricular assist devices as destination therapy.
        Circ Heart Fail. 2012; 5: 10-16
        • Kirklin J.K.
        • Naftel D.C.
        • Kormos R.L.
        • et al.
        Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients.
        J Heart Lung Transplant. 2013; 32: 141-156
        • Baskett R.
        • Crowell R.
        • Freed D.
        • et al.
        Canadian Cardiovascular Society focused position statement update on assessment of the cardiac patient for fitness to drive: fitness following left ventricular assist device implantation.
        Can J Cardiol. 2012; 28: 137-140
        • Miller L.W.
        • Guglin M.
        Patient selection for ventricular assist devices: a moving target.
        J Am Coll Cardiol. 2013; 61: 1209-1221
        • Rose E.A.
        • Gelijns A.C.
        • Moskowitz A.J.
        • et al.
        Long-term use of a left ventricular assist device for end-stage heart failure.
        N Engl J Med. 2001; 345: 1435-1443
        • Stevenson L.W.
        • Pagani F.D.
        • Young J.B.
        • et al.
        INTERMACS profiles of advanced heart failure: the current picture.
        J Heart Lung Transplant. 2009; 28: 535-541
        • Starling R.C.
        • Naka Y.
        • Boyle A.J.
        • et al.
        Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support).
        J Am Coll Cardiol. 2011; 57: 1890-1898
        • Boyle A.J.
        • Ascheim D.D.
        • Russo M.J.
        • et al.
        Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification.
        J Heart Lung Transplant. 2011; 30: 402-407
      2. ClinicalTrials.gov. Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device (LVAD) and Medical Management (ROADMAP).Available at: http://clinicaltrials.gov/show/NCT01452802. Accessed November 17, 2013.

      3. ClinicalTrials.gov. The Evaluation of VAD InterVEntion Before Inotropic Therapy (REVIVE-IT). Available at: http://clinicaltrials.gov/show/NCT01369407. Accessed November 17, 2013.

        • Fonarow G.C.
        • Abraham W.T.
        • Albert N.M.
        • et al.
        Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure: findings from the OPTIMIZE-HF program.
        J Am Coll Cardiol. 2008; 52: 190-199
        • Nohria A.
        • Hasselblad V.
        • Stebbins A.
        • et al.
        Cardiorenal interactions: insights from the ESCAPE trial.
        J Am Coll Cardiol. 2008; 51: 1268-1274
        • Solomon S.D.
        • Dobson J.
        • Pocock S.
        • et al.
        Influence of nonfatal hospitalization for heart failure on subsequent mortality in patients with chronic heart failure.
        Circulation. 2007; 116: 1482-1487
        • Szlachcic J.
        • Massie B.M.
        • Kramer B.L.
        • Topic N.
        • Tubau J.
        Correlates and prognostic implication of exercise capacity in chronic congestive heart failure.
        Am J Cardiol. 1985; 55: 1037-1042
        • Weber K.T.
        • Janicki J.S.
        Cardiopulmonary exercise testing for evaluation of chronic cardiac failure.
        Am J Cardiol. 1985; 55: 22A-31A
        • Mancini D.M.
        • Eisen H.
        • Kussmaul W.
        • et al.
        Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure.
        Circulation. 1991; 83: 778-786
        • Gorodeski E.Z.
        • Chu E.C.
        • Reese J.R.
        • et al.
        Prognosis on chronic dobutamine or milrinone infusions for stage D heart failure.
        Circ Heart Fail. 2009; 2: 320-324
        • Sandner S.E.
        • Wieselthaler G.
        • Zuckermann A.
        • et al.
        Survival benefit of the implantable cardioverter-defibrillator in patients on the waiting list for cardiac transplantation.
        Circulation. 2001; 104: I171-I176
        • Kim M.S.
        • Kato T.S.
        • Farr M.
        • et al.
        Hepatic dysfunction in ambulatory patients with heart failure: application of the MELD scoring system for outcome prediction.
        J Am Coll Cardiol. 2013; 61: 2253-2261
        • Flint K.M.
        • Matlock D.D.
        • Lindenfeld J.
        • Allen L.A.
        Frailty and the selection of patients for destination therapy left ventricular assist device.
        Circ Heart Fail. 2012; 5: 286-293
        • Cohn J.N.
        • Johnson G.
        • Ziesche S.
        • et al.
        A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure.
        N Engl J Med. 1991; 325: 303-310
        • Kato T.S.
        • Collado E.
        • Khawaja T.
        • et al.
        Value of peak exercise oxygen consumption combined with B-type natriuretic peptide levels for optimal timing of cardiac transplantation.
        Circ Heart Fail. 2013; 6: 6-14
        • Smedira N.
        • Hoercher K.J.
        • Lima B.
        • et al.
        Unplanned hospital readmissions after HeartMate II implantation: frequency, risk factors, and impact on resource use and survival.
        JACC Heart Fail. 2013; 1: 31-39
        • Starling R.C.
        • Moazami N.
        • Silvestry S.C.
        • et al.
        Unexpected abrupt increase in left ventricular assist device thrombosis.
        N Engl J Med. 2014; 370: 33-40
        • Sas G.
        • Boothroyd L.
        • Guertin J.
        • et al.
        Evaluation of the evidence on the HeartMate II and HeartWare ventricular assist devices for the treatment of chronic end-stage heart failure.
        Institut nationa d'excellence en snate et en services sociaux, Québec2012: 1-7
        • Alba A.C.
        • Alba L.F.
        • Delgado D.H.
        • et al.
        Cost-effectiveness of ventricular assist device therapy as a bridge to transplantation compared with nonbridged cardiac recipients.
        Circulation. 2013; 127: 2424-2435
        • Boothroyd L.J.
        • Lambert L.J.
        • Sas G.
        • et al.
        Should eligibility for heart transplantation be a requirement for left ventricular assist device use? Recommendations based on a systematic review.
        Can J Cardiol. 2013; 29: 1712-1720
        • Lietz K.
        • Long J.W.
        • Kfoury A.G.
        • et al.
        Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection.
        Circulation. 2007; 116: 497-505
        • Teuteberg J.J.
        • Ewald G.A.
        • Adamson R.M.
        • et al.
        Risk assessment for continuous flow left ventricular assist devices: does the destination therapy risk score work? An analysis of over 1,000 patients.
        J Am Coll Cardiol. 2012; 60: 44-51
        • Cowger J.
        • Sundareswaran K.
        • Rogers J.G.
        • et al.
        Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score.
        J Am Coll Cardiol. 2013; 61: 313-321