Advertisement
Canadian Journal of Cardiology

Risk Stratification in Acute Heart Failure

  • Douglas S. Lee
    Correspondence
    Corresponding author: Dr Douglas S. Lee, Institute for Clinical Evaluative Sciences, Division of Cardiology, University Health Network, Rm G-106, 2075 Bayview Ave, Toronto, Ontario M4N 3M5, Canada. Tel.: +1-416-340-3861; fax:+1-416-340-3036.
    Affiliations
    Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada

    Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada

    University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Justin A. Ezekowitz
    Affiliations
    Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada

    Canadian VIGOUR Centre, Edmonton, Alberta, Canada
    Search for articles by this author
Published:January 06, 2014DOI:https://doi.org/10.1016/j.cjca.2014.01.001

      Abstract

      Acute heart failure is a leading reason for emergency department visits, hospital admissions, and readmissions. Despite the high rate of hospitalization for heart failure and the high resource burden attributable to acute heart failure, limitations of clinical decisions have been demonstrated. Risk stratification methods might provide guidance to clinicians who care for patients with acute heart failure syndromes, and might improve decision-making in emergent care when decisions must be made quickly and accurately. Although many acute heart failure risk models have been developed in hospitalized cohorts to predict in-hospital mortality, there are fewer methods to enable prognostication broadly among all patients in a community-based setting. As validated predictive risk algorithms become increasingly accessible, they may be applied to select optimal therapies, determine how patients will be cared for in the emergency department, and improve decisions pertaining to patient disposition and follow-up.

      Résumé

      L’insuffisance cardiaque aiguë est la principale raison des visites au service des urgences, des admissions et des réadmissions à l’hôpital. En dépit du taux élevé d’hospitalisation liée à l’insuffisance cardiaque et du fardeau élevé des ressources attribuables à l’insuffisance cardiaque aiguë, les limites des décisions cliniques ont été démontrées. Les méthodes de stratification du risque pourraient fournir des directives aux cliniciens qui soignent les patients atteints d’un syndrome d’insuffisance cardiaque aiguë, et pourraient améliorer la prise de décision dans les soins émergents lorsque les décisions doivent être prises rapidement et consciencieusement. Bien que plusieurs modèles de risque sur l’insuffisance cardiaque aiguë aient été élaborés chez des cohortes hospitalisées pour prédire la mortalité intrahospitalière, il existe moins de méthodes pour permettre au mieux le pronostic chez tous les patients dans un cadre communautaire. Puisque les algorithmes de prédiction du risque validés deviennent de plus en plus accessibles, ils peuvent être appliqués pour choisir les traitements optimaux, déterminer la manière selon laquelle les patients seront pris en charge au service des urgences et améliorer les décisions concernant la prise en charge et le suivi des patients.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • et al.
        Heart Disease and Stroke Statistics–2013 Update: a report from the American Heart Association.
        Circulation. 2013; 127: e6-e245
        • Jencks S.F.
        • Williams M.V.
        • Coleman E.A.
        Rehospitalizations among patients in the Medicare fee-for-service program.
        N Engl J Med. 2009; 360: 1418-1428
        • O'Connor C.M.
        • Abraham W.T.
        • Albert N.M.
        • et al.
        Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF).
        Am Heart J. 2008; 156: 662-673
        • Lee D.S.
        • Austin P.C.
        • Stukel T.A.
        • et al.
        “Dose-dependent” impact of recurrent cardiac events on mortality in patients with heart failure.
        Am J Med. 2009; 122: 162-169
        • Setoguchi S.
        • Stevenson L.W.
        • Schneeweiss S.
        Repeated hospitalizations predict mortality in the community population with heart failure.
        Am Heart J. 2007; 154: 260-266
        • Krumholz H.M.
        • Merrill A.R.
        • Schone E.M.
        • et al.
        Patterns of hospital performance in acute myocardial infarction and heart failure 30-day mortality and readmission.
        Circ Cardiovasc Qual Outcomes. 2009; 2: 407-413
        • Dunlay S.M.
        • Shah N.D.
        • Shi Q.
        • et al.
        Lifetime costs of medical care after heart failure diagnosis.
        Circ Cardiovasc Qual Outcomes. 2011; 4: 68-75
        • Tu J.V.
        • Nardi L.
        • Fang J.
        • et al.
        National trends in rates of death and hospital admissions related to acute myocardial infarction, heart failure and stroke, 1994-2004.
        CMAJ. 2009; 180: E118-E125
        • Kannel W.B.
        • D'Agostino R.B.
        • Silbershatz H.
        • et al.
        Profile for estimating risk of heart failure.
        Arch Intern Med. 1999; 159: 1197-1204
        • Lee D.S.
        • Chiu M.
        • Manuel D.G.
        • et al.
        Trends in risk factors for cardiovascular disease in Canada: temporal, socio-demographic and geographic factors.
        CMAJ. 2009; 181: E55-E66
        • Lipscombe L.L.
        • Hux J.E.
        Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995-2005: a population-based study.
        Lancet. 2007; 369: 750-756
        • Vashi A.A.
        • Fox J.P.
        • Carr B.G.
        • et al.
        Use of hospital-based acute care among patients recently discharged from the hospital.
        JAMA. 2013; 309: 364-371
        • Chun S.
        • Tu J.V.
        • Wijeysundera H.C.
        • et al.
        Lifetime analysis of hospitalizations and survival of patients newly admitted with heart failure.
        Circ Heart Fail. 2012; 5: 414-421
        • Desai A.S.
        The three-phase terrain of heart failure readmissions.
        Circ Heart Fail. 2012; 5: 398-400
        • Metra M.
        • Ponikowski P.
        • Dickstein K.
        • et al.
        Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology.
        Eur J Heart Fail. 2007; 9: 684-694
        • Ezekowitz J.A.
        • Bakal J.A.
        • Kaul P.
        • Westerhout C.M.
        • Armstrong P.W.
        Acute heart failure in the emergency department: short and long-term outcomes of elderly patients with heart failure.
        Eur J Heart Fail. 2008; 10: 308-314
        • Lee D.S.
        • Schull M.J.
        • Alter D.A.
        • et al.
        Early deaths in patients with heart failure discharged from the emergency department: a population-based analysis.
        Circ Heart Fail. 2010; 3: 228-235
        • Hauptman P.J.
        • Swindle J.
        • Hussain Z.
        • Biener L.
        • Burroughs T.E.
        Physician attitudes toward end-stage heart failure: a national survey.
        Am J Med. 2008; 121: 127-135
        • Poses R.M.
        • Smith W.R.
        • McClish D.K.
        • et al.
        Physicians' survival predictions for patients with acute congestive heart failure.
        Arch Intern Med. 1997; 157: 1001-1007
        • Smith W.R.
        • Poses R.M.
        • McClish D.K.
        • et al.
        Prognostic judgments and triage decisions for patients with acute congestive heart failure.
        Chest. 2002; 121: 1610-1617
        • Fine M.J.
        • Auble T.E.
        • Yealy D.M.
        • et al.
        A prediction rule to identify low-risk patients with community-acquired pneumonia.
        N Engl J Med. 1997; 336: 243-250
        • Dawes R.M.
        • Faust D.
        • Meehl P.E.
        Clinical versus actuarial judgment.
        Science. 1989; 243: 1668-1674
        • Kleinmuntz B.
        Why we still use our heads instead of formulas: toward an integrative approach.
        Psychol Bull. 1990; 107: 296-310
        • Quinn J.V.
        • Stiell I.G.
        • McDermott D.A.
        • Kohn M.A.
        • Wells G.A.
        The San Francisco Syncope Rule vs physician judgment and decision making.
        Am J Emerg Med. 2005; 23: 782-786
        • Graff L.
        • Orledge J.
        • Radford M.J.
        • et al.
        Correlation of the Agency for Health Care Policy and Research congestive heart failure admission guideline with mortality: peer review organization voluntary hospital association initiative to decrease events (PROVIDE) for congestive heart failure.
        Ann Emerg Med. 1999; 34: 429-437
        • Hanley J.A.
        • McNeil B.J.
        The meaning and use of the area under a receiver operating characteristic (ROC) curve.
        Radiology. 1982; 143: 29-36
        • LaValley M.P.
        Logistic regression.
        Circulation. 2008; 117: 2395-2399
        • Steyerberg E.W.
        • Vickers A.J.
        • Cook N.R.
        • et al.
        Assessing the performance of prediction models: a framework for traditional and novel measures.
        Epidemiology. 2010; 21: 128-138
        • Harrell Jr., F.E.
        • Lee K.L.
        • Mark D.B.
        Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors.
        Stat Med. 1996; 15: 361-387
        • Van Houwelingen J.C.
        • Le Cessie S.
        Predictive value of statistical models.
        Stat Med. 1990; 9: 1303-1325
        • Sasaki N.
        • Lee J.
        • Park S.
        • et al.
        Development and validation of an acute heart failure-specific mortality predictive model based on administrative data.
        Can J Cardiol. 2013; 29: 1055-1061
        • Efron B.
        • Tibshirani R.J.
        An Introduction to the Bootstrap.
        Chapman and Hall/CRC Press, New York1998
        • Gheorghiade M.
        • Zannad F.
        • Sopko G.
        • et al.
        Acute heart failure syndromes: current state and framework for future research.
        Circulation. 2005; 112: 3958-3968
        • Gheorghiade M.
        • Braunwald E.
        A proposed model for initial assessment and management of acute heart failure syndromes.
        JAMA. 2011; 305: 1702-1703
        • Felker G.M.
        • Adams Jr., K.F.
        • Konstam M.A.
        • O'Connor C.M.
        • Gheorghiade M.
        The problem of decompensated heart failure: nomenclature, classification, and risk stratification.
        Am Heart J. 2003; 145: S18-S25
        • Kalantar-Zadeh K.
        • Block G.
        • Horwich T.
        • Fonarow G.C.
        Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure.
        J Am Coll Cardiol. 2004; 43: 1439-1444
        • Gheorghiade M.
        • Abraham W.T.
        • Albert N.M.
        • et al.
        Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure.
        JAMA. 2006; 296: 2217-2226
        • Lee D.S.
        • Ghosh N.
        • Floras J.S.
        • et al.
        Association of blood pressure at hospital discharge with mortality in patients diagnosed with heart failure.
        Circ Heart Fail. 2009; 2: 616-623
        • Justice A.C.
        • Covinsky K.E.
        • Berlin J.A.
        Assessing the generalizability of prognostic information.
        Ann Intern Med. 1999; 130: 515-524
        • Braunholtz D.A.
        • Edwards S.J.
        • Lilford R.J.
        Are randomized clinical trials good for us (in the short term)? Evidence for a “trial effect.”.
        J Clin Epidemiol. 2001; 54: 217-224
        • Man-Son-Hing M.
        • Hart R.G.
        • Berquist R.
        • O'Connor A.M.
        • Laupacis A.
        Differences in treatment preferences between persons who enrol and do not enrol in a clinical trial.
        Ann R Coll Physicians Surg Can. 2001; 34: 292-296
        • Coca S.G.
        • Krumholz H.M.
        • Garg A.X.
        • Parikh C.R.
        Underrepresentation of renal disease in randomized controlled trials of cardiovascular disease.
        JAMA. 2006; 296: 1377-1384
        • Singh M.
        • Reeder G.S.
        • Jacobsen S.J.
        • et al.
        Scores for post-myocardial infarction risk stratification in the community.
        Circulation. 2002; 106: 2309-2314
        • Fonarow G.C.
        • Adams Jr., K.F.
        • Abraham W.T.
        • Yancy C.W.
        • Boscardin W.J.
        Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis.
        JAMA. 2005; 293: 572-580
        • Austin P.C.
        • Tu J.V.
        • Lee D.S.
        Logistic regression had superior performance compared with regression trees for predicting in-hospital mortality in patients hospitalized with heart failure.
        J Clin Epidemiol. 2010; 63: 1145-1155
        • Auble T.E.
        • Hsieh M.
        • Gardner W.
        • et al.
        A prediction rule to identify low-risk patients with heart failure.
        Acad Emerg Med. 2005; 12: 514-521
        • Hsieh M.
        • Auble T.E.
        • Yealy D.M.
        Validation of the Acute Heart Failure Index.
        Ann Emerg Med. 2008; 51: 37-44
        • Hsiao J.
        • Motta M.
        • Wyer P.
        Validating the acute heart failure index for patients presenting to the emergency department with decompensated heart failure.
        Emerg Med J. 2012; 29: e5
        • Peterson P.N.
        • Rumsfeld J.S.
        • Liang L.
        • et al.
        A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program.
        Circ Cardiovasc Qual Outcomes. 2010; 3: 25-32
        • Lee D.S.
        • Austin P.C.
        • Rouleau J.L.
        • et al.
        Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model.
        JAMA. 2003; 290: 2581-2587
        • Felker G.M.
        • Leimberger J.D.
        • Califf R.M.
        • et al.
        Risk stratification after hospitalization for decompensated heart failure.
        J Card Fail. 2004; 10: 460-466
        • Levy W.C.
        • Mozaffarian D.
        • Linker D.T.
        • et al.
        The Seattle Heart Failure Model: prediction of survival in heart failure.
        Circulation. 2006; 113: 1424-1433
        • Pocock S.J.
        • Wang D.
        • Pfeffer M.A.
        • et al.
        Predictors of mortality and morbidity in patients with chronic heart failure.
        Eur Heart J. 2006; 27: 65-75
        • Peacock W.F.
        • Fonarow G.C.
        • Ander D.S.
        • et al.
        Society of Chest Pain Centers Recommendations for the evaluation and management of the observation stay acute heart failure patient: a report from the Society of Chest Pain Centers Acute Heart Failure Committee.
        Crit Pathw Cardiol. 2008; 7: 83-86
        • Collins S.P.
        • Lindsell C.J.
        • Naftilan A.J.
        • et al.
        Low-risk acute heart failure patients: external validation of the Society of Chest Pain Center's recommendations.
        Crit Pathw Cardiol. 2009; 8: 99-103
        • Stiell I.G.
        • Clement C.M.
        • Brison R.J.
        • et al.
        A risk scoring system to identify emergency department patients with heart failure at high risk for serious adverse events.
        Acad Emerg Med. 2013; 20: 17-26
        • Lee D.S.
        • Stitt A.
        • Austin P.C.
        • et al.
        Prediction of heart failure mortality in emergent care: a cohort study.
        Ann Intern Med. 2012; 156: 767-775
        • Abraham W.T.
        • Fonarow G.C.
        • Albert N.M.
        • et al.
        Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF).
        J Am Coll Cardiol. 2008; 52: 347-356
        • Glesby M.J.
        • Hoover D.R.
        Survivor treatment selection bias in observational studies: examples from the AIDS literature.
        Ann Intern Med. 1996; 124: 999-1005
        • Nutter A.L.
        • Tanawuttiwat T.
        • Silver M.A.
        Evaluation of 6 prognostic models used to calculate mortality rates in elderly heart failure patients with a fatal heart failure admission.
        Congest Heart Fail. 2010; 16: 196-201
        • May H.T.
        • Horne B.D.
        • Levy W.C.
        • et al.
        Validation of the Seattle Heart Failure Model in a community-based heart failure population and enhancement by adding B-type natriuretic peptide.
        Am J Cardiol. 2007; 100: 697-700
      1. The Canadian Cardiovascular Society. Is It Heart Failure and What Should I Do? 2012 Update. Available at: http://ccsguidelineprograms.ca/downloads/educational_tools/HF_PG_Eng/. Accessed January 17, 2014.

        • Collins S.P.
        • Lindsell C.J.
        • Jenkins C.A.
        • et al.
        Risk stratification in acute heart failure: rationale and design of the STRATIFY and DECIDE studies.
        Am Heart J. 2012; 164: 825-834
        • Lee D.S.
        • Stukel T.A.
        • Austin P.C.
        • et al.
        Improved outcomes with early collaborative care of ambulatory heart failure patients discharged from the emergency department.
        Circulation. 2010; 122: 1806-1814
        • Venkatesh A.K.
        • Geisler B.P.
        • Gibson Chambers J.J.
        • et al.
        Use of observation care in US emergency departments, 2001 to 2008.
        PLoS One. 2011; 6: e24326
        • Peacock W.F.
        • Young J.
        • Collins S.
        • Diercks D.
        • Emerman C.
        Heart failure observation units: optimizing care.
        Ann Emerg Med. 2006; 47: 22-33
        • McKelvie R.S.
        • Moe G.W.
        • Ezekowitz J.A.
        • et al.
        The 2012 Canadian Cardiovascular Society heart failure management guidelines update: focus on acute and chronic heart failure.
        Can J Cardiol. 2013; 29: 168-181
        • Braga J.R.
        • Tu J.V.
        • Austin P.C.
        • et al.
        Outcomes and care of patients with acute heart failure syndromes and cardiac troponin elevation.
        Circ Heart Fail. 2013; 6: 193-202
        • Schneider H.G.
        • Lam L.
        • Lokuge A.
        • et al.
        B-type natriuretic peptide testing, clinical outcomes, and health services use in emergency department patients with dyspnea: a randomized trial.
        Ann Intern Med. 2009; 150: 365-371