Advertisement
Canadian Journal of Cardiology
Review| Volume 30, ISSUE 4, P396-404, April 2014

Download started.

Ok

Next-Generation Airbags and the Possibility of Negative Outcomes Due to Thoracic Injury

Published:January 09, 2014DOI:https://doi.org/10.1016/j.cjca.2014.01.002

      Abstract

      Airbags have been shown to decrease morbidity and mortality associated with motor vehicle accidents when used in conjunction with seat belts. Airbag deployment alone however, has recently been implicated as a cause of significant thoracic injuries to unrestrained drivers. Resulting injuries include major cardiovascular and pulmonary complications. Airbags provide safety to occupants of cars and reduce mortality by 25%-30%. When not used in accordance with international standards, however, they can cause serious injury. We searched online databases from 1970 to January 2013 and included 17 retrospective studies, 12 systematic review articles, 18 case reports, 5 prospective studies, 1 lab study, 3 cohort studies, and 1 meta-analysis. Outcomes included clinical/functional response, left ventricular remodelling, hospitalizations, and mortality. Physicians must maintain a high index of suspicion for injury when evaluating drivers who were not wearing seat belts when airbags deployed, regardless of the speed of the collision, because increased risk of thoracic injury with airbags has been described in the literature. Our review indicates that even new technology, specifically the side air bag, has been associated with a risk of thoracic injury. Considering that regulations are a driving force for airbag technology, further research and scrutiny by medical teams is needed to consider the effects of airbag technology advancements on morbidity and mortality rates of car accidents, to help in guiding further improvement, and to help lawmakers in implementing rules that protect the safety of occupants.

      Résumé

      Il a été démontré que les coussins gonflables diminuent la morbidité et la mortalité associées aux accidents d’automobile lorsqu’ils sont utilisés conjointement aux ceintures de sécurité. Cependant, le seul déploiement du coussin gonflable a récemment été reconnu comme ayant causé des blessures thoraciques importantes aux conducteurs qui ne bouclaient pas leur ceinture. Les blessures subies comprennent des complications cardiovasculaires et pulmonaires importantes. Les coussins gonflables assurent la sécurité des occupants des voitures et réduisent la mortalité de 25 % à 30 %. Cependant, lorsqu’ils ne sont pas utilisés selon les normes internationales, ils peuvent causer des blessures sérieuses. Nous avons cherché des bases de données en ligne allant de 1970 à janvier 2013 et avons inclus 17 études rétrospectives, 12 articles de revues systématiques, 18 observations, 5 études prospectives, 1 étude de laboratoire, 3 études de cohorte et 1 méta-analyse. Les résultats incluaient la réponse clinique et la réponse fonctionnelle, le remodelage ventriculaire gauche, les hospitalisations et la mortalité. Les médecins doivent maintenir un indice élevé de suspicion de blessures lorsqu’ils évaluent des conducteurs qui ne portaient pas leur ceinture lors du déploiement des coussins gonflables, quelle que soit la vitesse au moment de la collision, puisque l’augmentation du risque de blessures thoraciques liées aux coussins gonflables a été décrite dans la littérature. Notre revue indique que même la nouvelle technologie, particulièrement les coussins gonflables latéraux, a été associée à un risque de blessures thoraciques. Considérant que la réglementation est le principal moteur de la technologie liée aux coussins gonflables, d’autres recherches et études minutieuses doivent être réalisées par les équipes médicales pour examiner les effets des avancées technologiques en matière de coussins gonflables sur les taux de morbidité et de mortalité liés aux accidents de voiture afin de contribuer à l’orientation des nouvelles améliorations et d’aider les législateurs à mettre en place des règlements qui protègent la sécurité des occupants.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Demirhan R.
        • Onan B.
        • Oz K.
        • Halezeroglu S.
        Comprehensive analysis of 4205 patients with chest trauma: a 10-year experience.
        Interact Cardiovasc Thorac Surg. 2009; 9: 450-453
        • O'Connor J.V.
        • Adamski J.
        The diagnosis and treatment of non-cardiac thoracic trauma.
        J R Army Med Corps. 2010; 156: 5-14
        • deGuzman B.J.
        • Morgan A.S.
        • Pharr W.F.
        Aortic transection following air-bag deployment.
        N Engl J Med. 1997; 337: 573-574
        • Dunn J.A.
        • Williams M.G.
        Occult ascending aortic rupture in the presence of an air bag.
        Ann Thorac Surg. 1996; 62: 577-578
        • Sharma O.P.
        • Mousset X.R.
        Review of tricuspid valve injury after airbag deployment: presentation of a case and discussion of mechanism of injury.
        J Trauma. 2000; 48: 152-156
        • Thekkudan J.
        • Luckraz H.
        • Ng A.
        • Norell M.
        Tricuspid valve chordal rupture due to airbag injury and review of pathophysiological mechanisms.
        Interact Cardiovasc Thorac Surg. 2012; 15: 555-557
        • Lancaster G.I.
        • DeFrance J.H.
        • Borruso J.J.
        Air-bag-associated rupture of the right atrium.
        N Engl J Med. 1993; 328: 358
        • Nagarajan D.V.
        • Wilde M.
        • Papouchado M.
        Reversible acute myocardial injury following air bag deployment.
        Emerg Med J. 2005; 22: 382-383
        • Zajarias A.
        • Thanigaraj S.
        • Taniuchi M.
        Acute coronary occlusion and myocardial infarction secondary to blunt chest trauma from an automobile airbag deployment.
        J Invasive Cardiol. 2006; 18: E71-E73
        • Hanna K.M.
        • Weiman D.S.
        • Pate J.W.
        • Wolf B.A.
        • Fabian T.C.
        Aortic valve injury secondary to blunt trauma from an air bag.
        Tenn Med. 1997; 90: 195-196
        • Alam M.
        • Bickers D.R.
        Airbag trauma induced cutaneous fistulae in a heart transplant patient.
        J Am Acad Dermatol. 2002; 47: S175-S176
        • Brevetti G.R.
        • Zetterlund P.
        • Spowart G.
        Delayed cardiac tamponade complicating airbag deployment.
        J Trauma. 2002; 53: 104-105
        • Lee D.H.
        • Park T.U.
        • Kim C.W.
        Haemopericardium and liver laceration associated with airbag deployment.
        Hong Kong J Emerg Med. 2009; 16: 242-245
        • Stoneham M.D.
        Bilateral first rib fractures associated with driver's air bag inflation: case report and implications for surgery.
        Eur J Emerg Med. 1995; 2: 60-62
        • Daniels R.J.
        • Fulcher R.A.
        An unusual cause of rib fracture following a road traffic accident.
        J Accid Emerg Med. 1997; 14: 113-114
        • Monkhouse S.J.
        • Kelly M.D.
        Airbag-related chest wall burn as a marker of underlying injury: a case report.
        J Med Case Rep. 2008; 2: 91
        • Kapisiz N.S.
        • Ozpolat B.
        • Kapisiz F.
        • Yücel E.
        Sternal fracture due to airbag injury: case report.
        Ulus Travma Acil Cerrahi Derg. 2010; 16: 181-182
        • Morgenstern K.
        • Talucci R.
        • Kaufman M.S.
        • Samuels L.E.
        Bilateral pneumothorax following air bag deployment.
        Chest. 1998; 114: 624-626
        • Govindarajan R.
        • Ferrer G.
        • Smolley L.A.
        • Oliveira E.A.
        • Rahaghi F.
        Airbag pneumonitis.
        Case Rep Med. 2010; 2010: 498569
        • Meyer M.C.
        • Finney T.
        Who wants air bags?.
        Chance. 2005; 18: 3-16
        • Lindstaedt M.
        • Germing A.
        • Lawo T.
        • et al.
        Acute and long-term clinical significance of myocardial contusion following blunt thoracic trauma: results of a prospective study.
        J Trauma. 2002; 52: 479-485
        • Cummins J.S.
        • Koval K.J.
        • Cantu R.V.
        • Spratt K.F.
        Risk of injury associated with the use of seat belts and air bags in motor vehicle crashes.
        Bull NYU Hosp Jt Dis. 2008; 66: 290-296
        • Olson C.M.
        • Cummings P.
        • Rivara F.P.
        Association of first- and second-generation air bags with front occupant death in car crashes: a matched cohort study.
        Am J Epidemiol. 2006; 164: 161-169
        • Braver E.R.
        • Scerbo M.
        • Kufera J.A.
        • et al.
        Deaths among drivers and right-front passengers in frontal collisions: redesigned air bags relative to first-generation air bags.
        Traffic Inj Prev. 2008; 9: 48-58
        • Hoye A.
        Are airbags a dangerous safety measure? A meta-analysis of the effects of frontal airbags on driver fatalities.
        Accid Anal Prev. 2010; 42: 2030-2040
        • Thor C.P.
        • Gabler H.C.
        The influence of airbags on thoracic organ lesion types.
        Biomed Sci Instrum. 2009; 45: 352-357
        • MacLennan P.A.
        • Ashwander W.S.
        • Griffin R.
        • McGwin Jr., G.
        • Rue 3rd, L.W.
        Injury risks between first- and second-generation airbags in frontal motor vehicle collisions.
        Accid Anal Prev. 2008; 40: 1371-1374
        • Matthes G.
        • Schmucker U.
        • Lignitz E.
        • et al.
        Does the frontal airbag avoid thoracic injury?.
        Arch Orthop Trauma Surg. 2006; 126: 541-544
        • Hallman J.J.
        • Yoganandan N.
        • Pintar F.A.
        Torso side airbag out-of-position evaluation using stationary and dynamic occupants.
        Biomed Sci Instrum. 2008; 44: 123-128
        • Hallman J.J.
        • Yoganandan N.A.
        • Pintar F.A.
        Characterization of torso side airbag aggressivity.
        Biomed Sci Instrum. 2009; 45: 101-106
        • Griffin R.
        • Huisingh C.
        • McGwin Jr., G.
        • Reiff D.
        Association between side-impact airbag deployment and risk of injury: a matched cohort study using the CIREN and the NASS-CDS.
        J Trauma Acute Care Surg. 2012; 73: 914-918
      1. Morris A, Welsh R, Thomas P, Kirk A. Head and chest injury outcomes in struck side crashes. Proceedings of International IRCOBI Conference on the Biomechanics of Impact. 2005. Available at: http://www.ircobi.org/downloads/2005%20IRCOBI%20Conference%20Proceedings%20(table%20of%20contents).pdf. Accessed February 25, 2014.

        • Braver E.R.
        • Shardell M.
        • Teoh E.R.
        How have changes in air bag designs affected frontal crash mortality?.
        Ann Epidemiol. 2010; 20: 499-510
        • Yoganandan N.
        • Morgan M.R.
        • Eppinger R.H.
        • et al.
        Mechanisms of thoracic injury in frontal impact.
        J Biomech Eng. 1996; 118: 595-597
        • Parr M.J.
        Blunt cardiac injury.
        Minerva Anestesiol. 2004; 70: 201-205
        • Meredith J.W.
        • Hoth J.J.
        Thoracic trauma: when and how to intervene.
        Surg Clin North Am. 2007; 87: 95-118
        • Sybrandy K.C.
        • Cramer M.J.
        • Burgersdijk C.
        Diagnosing cardiac contusion: old wisdom and new insights.
        Heart. 2003; 89: 485-489
        • Kimura B.J.
        • Bocchicchio M.
        • Willis C.L.
        • Demaria A.N.
        Screening cardiac ultrasonographic examination in patients with suspected cardiac disease in the emergency department.
        Am Heart J. 2001; 142: 324-330
        • Maron B.J.
        • Estes N.A.
        Commotio cordis.
        N Engl J Med. 2010; 362: 917-927
        • Salim A.
        • Velmahos G.C.
        • Jindal A.
        • et al.
        Clinically significant blunt cardiac trauma: role of serum troponin levels combined with electrocardiographic findings.
        J Trauma. 2001; 50: 237-243
        • Blaivas M.
        • Lyon M.
        • Duggal S.
        A prospective comparison of supine chest radiography and bedside ultrasound for the diagnosis of traumatic pneumothorax.
        Acad Emerg Med. 2005; 12: 844-849
        • Vignon P.
        • Guéret P.
        • Vedrinne J.M.
        • et al.
        Role of transesophageal echocardiography in the diagnosis and management of traumatic aortic disruption.
        Circulation. 1995; 92: 2959-2968
        • Vignon P.
        • Boncoeur M.P.
        • François B.
        • et al.
        Comparison of multiplane transesophageal echocardiography and contrast-enhanced helical CT in the diagnosis of blunt traumatic cardiovascular injuries.
        Anesthesiology. 2001; 94: 615-622
        • Oikonomou A.
        • Prassopoulos P.
        CT imaging of blunt chest trauma.
        Insights Imaging. 2011; 2: 281-295
        • Karmy-Jones R.
        • Jurkovich G.J.
        Blunt chest trauma.
        Curr Probl Surg. 2004; 41: 211-380
        • Asensio J.A.
        • Stewart B.M.
        • Murray J.
        • et al.
        Penetrating cardiac injuries.
        Surg Clin North Am. 1996; 76: 685-724
        • Banning A.P.
        • Pillai R.
        Non-penetrating cardiac and aortic trauma.
        Heart. 1997; 78: 226-229
        • Bertinchant J.P.
        • Robert E.
        • Polge A.
        • et al.
        Comparison of the diagnostic value of cardiac troponin I and T determinations for detecting early myocardial damage and the relationship with histological findings after isoprenaline-induced cardiac injury in rats.
        Clin Chim Acta. 2000; 298: 13-28
        • Hoffmann U.
        • Bamberg F.
        • Chae C.U.
        • et al.
        Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial.
        J Am Coll Cardiol. 2009; 53: 1642-1650
        • Co S.J.
        • Yong-Hing C.J.
        • Galea-Soler S.
        • et al.
        Role of imaging in penetrating and blunt traumatic injury to the heart.
        Radiographics. 2011; 31: E101-E115
        • Southam S.
        • Jutila C.
        • Ketai L.
        Contrast-enhanced cardiac MRI in blunt chest trauma: differentiating cardiac contusion from acute peri-traumatic myocardial infarction.
        J Thorac Imaging. 2006; 21: 176-178
        • Yang Q.
        • Li K.
        • Liu X.
        • et al.
        Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center.
        J Am Coll Cardiol. 2009; 54: 69-76
        • Baccouche H.
        • Beck T.
        • Maunz M.
        • Fogarassy P.
        • Beyer M.
        Cardiovascular magnetic resonance of myocardial infarction after blunt chest trauma: a heartbreaking soccer-shot.
        J Cardiovasc Magn Reson. 2009; 11: 39
        • Yoganandan N.
        • Pintar F.A.
        • Stemper B.D.
        • Gennarelli T.A.
        • Weigelt J.A.
        Biomechanics of side impact: injury criteria, aging occupants, and airbag technology.
        J Biomech. 2007; 40: 227-243
        • Bédard M.
        • Guyatt G.H.
        • Stones M.J.
        • Hirdes J.P.
        The independent contribution of driver, crash, and vehicle characteristics to driver fatalities.
        Accid Anal Prev. 2002; 34: 717-727
      2. Department of Transportation. National Highway Traffic Safety Administration. 49 CFR Parts 552, 571, 585, and 595 [Docket No. NHTSA 99-6407; Notice 1] RIN 2127-AG70. Federal Motor Vehicle Safety Standards; Occupant Crash Protection. Available at: http://www.nhtsa.gov/cars/rules/rulings/AAirBagSNPRM/Index.html. Accessed February 25, 2014.