Advertisement
Canadian Journal of Cardiology
Basic Research| Volume 30, ISSUE 12, P1689-1699, December 2014

Download started.

Ok

Micro-RNA 21Targets Dual Specific Phosphatase 8 to Promote Collagen Synthesis in High Glucose–Treated Primary Cardiac Fibroblasts

  • Shulei Liu
    Affiliations
    Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

    Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Search for articles by this author
  • Wenqi Li
    Affiliations
    Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

    Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Search for articles by this author
  • Mingtong Xu
    Affiliations
    Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Search for articles by this author
  • Hui Huang
    Affiliations
    Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

    Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Search for articles by this author
  • Jingfeng Wang
    Affiliations
    Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

    Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
    Search for articles by this author
  • Xiaochao Chen
    Correspondence
    Corresponding author: Dr Xiaochao Chen, Department of Cardiology, Sun-Yat Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China. Tel.: +86-20-81332713; fax: +86-20-81332713.
    Affiliations
    Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

    Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

    Zengcheng People's Hospital, Guangzhou, China
    Search for articles by this author
Published:August 19, 2014DOI:https://doi.org/10.1016/j.cjca.2014.07.747

      Abstract

      Background

      Micro-RNA 21 (miR-21) has been shown to contribute to cardiac fibrosis in many diseases. In this study we investigated the role of miR-21 in excessive production of collagen in diabetic cardiomyopathy.

      Methods

      The proliferation rate of cardiac fibroblasts was analyzed by Western blot, Cell Counting Kit-8 kit (Dojindo Molecular Technologies, Kumamoto, Japan), and Cell-Light EdU Apollo 488 In Vitro Imaging Kit (RiboBio, Guangzhou, China). Real-time polymerase chain reaction and Western blotting were conducted to determine gene expression levels. A luciferase reporter assay was used to verify the interaction between miR-21 and the 3′ untranslated region (3′UTR) of dual specific phosphatase 8 (DUSP8).

      Results

      Our results show that high glucose promoted the proliferation and collagen synthesis of rat cardiac fibroblasts, which was accompanied by an increase of miR-21. Gain-of-function and loss-of-function assays confirmed that miR-21 mediated this effect, suggesting the crucial role of miR-21 in diabetic cardiomyopathy. Our study also identified a direct target of miR-21, DUSP8, which regulates cell proliferation and collagen synthesis in cardiac fibroblasts through p38 and c-Jun N-terminal kinase (JNK)/stress-activated kinase (SAPK) signalling. Our results show that miR-21 bound to the 3′UTR of DUSP8 post-transcriptionally repressed its expression. In addition, enforced expression of miR-21 activated the JNK/SAPK and p38 signalling pathways.

      Conclusions

      Our study shows that miR-21 promotes high glucose–induced cardiac fibrosis through the JNK/SAPK and p38 signalling pathways by suppressing DUSP8 expression.

      Résumé

      Introduction

      Il a été démontré que la microARN 21 (miARN-21) contribue à la fibrose cardiaque dans plusieurs maladies. Dans cette étude, nous avons examiné le rôle de la miARN-21 dans la production excessive de collagène lors de cardiomyopathie diabétique.

      Méthodes

      Le taux de prolifération des fibroblastes cardiaques a été analysé par le buvardage de Western, le Cell Counting Kit-8 (Dojindo Molecular Technologies, Kumamoto, Japon), et Cell-Light EdU Apollo 488 In Vitro Imaging Kit (RiboBio, Guangzhou, Chine). La réaction en chaîne par polymérase en temps réel et le buvardage de Western ont été effectués pour déterminer les taux d’expression génique. Un dosage du gène rapporteur de la luciférase a été utilisé pour vérifier l’interaction entre la miARN-21 et la séquence non traduite en 3′ (3′UTR : untranslated region) et le DUSP8 (dual specific phosphatase 8 : phosphatase 8 à double spécificité).

      Résultats

      Nos résultats montrent qu’un glucose élevé stimule la prolifération des fibroblastes cardiaques et favorise la synthèse du collagène chez le rat, et qu’il est accompagné d’une augmentation de la miARN-1. Les dosages « gain de fonction » et « perte de fonction » ont confirmé que la miARN-21 médiait cet effet, ce qui suggère le rôle crucial de la miARN-21 dans la cardiomyopathie diabétique. Notre étude a de plus déterminé une cible directe de la miARN-21, le DUSP8, qui régule la prolifération des cellules et la synthèse du collagène dans les fibroblastes cardiaques par la signalisation de p38 et de JNK/SAPK (c-Jun N-terminal kinase : protéine JNK/ stress-activated kinase : protéine SAPK). Nos résultats montrent que la miARN-21 liée à la 3'UTR du DUSP8 réprime son expression de manière post-transcriptionnelle. De plus, l’expression renforcée de la miARN-21 a activé les voies de signalisation de JNK/SAPK et de p38.

      Conclusions

      Notre étude montre que la miARN-21 favorise la fibrose cardiaque induite par le glucose élevé par les voies de signalisation de JNK/SAPK et de p38 en réprimant l’expression du DUSP8.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aneja A.
        • Tang W.H.
        • Bansilal S.
        • Garcia M.J.
        • Farkouh M.E.
        Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options.
        Am J Med. 2008; 121: 748-757
        • Krenning G.
        • Zeisberg E.M.
        • Kalluri R.
        The origin of fibroblasts and mechanism of cardiac fibrosis.
        J Cell Physiol. 2010; 225: 631-637
        • Brown R.D.
        • Ambler S.K.
        • Mitchell M.D.
        • Long C.S.
        The cardiac fibroblast: therapeutic target in myocardial remodeling and failure.
        Ann Rev Pharmacol Toxicol. 2005; 45: 657-687
        • Roy S.
        • Khanna S.
        • Hussain S.R.
        • et al.
        MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue.
        Cardiovasc Res. 2009; 82: 21-29
        • Duisters R.F.
        • Tijsen A.J.
        • Schroen B.
        • et al.
        miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling.
        Circ Res. 2009; 104 (6p following 178): 170-178
        • Ambros V.
        The functions of animal microRNAs.
        Nature. 2004; 431: 350-355
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Bauersachs J.
        Regulation of myocardial fibrosis by MicroRNAs.
        J Cardiovasc Pharmacol. 2010; 56: 454-459
        • van Rooij E.
        • Sutherland L.B.
        • Thatcher J.E.
        • et al.
        Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.
        Proc Natl Acad Sci U S A. 2008; 105: 13027-13032
        • Matkovich S.J.
        • Wang W.
        • Tu Y.
        • et al.
        MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts.
        Circ Res. 2010; 106: 166-175
        • Thum T.
        • Gross C.
        • Fiedler J.
        • et al.
        MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts.
        Nature. 2008; 456: 980-984
        • Shen E.
        • Diao X.
        • Wang X.
        • Chen R.
        • Hu B.
        MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy.
        Am J Pathol. 2011; 179: 639-650
        • Cardin S.
        • Guasch E.
        • Luo X.
        • et al.
        Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure.
        Circ Arrhythm Electrophysiol. 2012; 5: 1027-1035
        • Feng B.
        • Chen S.
        • George B.
        • Feng Q.
        • Chakrabarti S.
        miR133a regulates cardiomyocyte hypertrophy in diabetes.
        Diabetes Metab Res Rev. 2010; 26: 40-49
        • Coqueret O.
        Linking cyclins to transcriptional control.
        Gene. 2002; 299: 35-55
        • Camps M.
        • Nichols A.
        • Arkinstall S.
        Dual specificity phosphatases: a gene family for control of MAP kinase function.
        FASEB J. 2000; 14: 6-16
        • Fan D.
        • Takawale A.
        • Lee J.
        • Kassiri Z.
        Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease.
        Fibrogenesis Tissue Repair. 2012; 5: 15
        • Kondoh K.
        • Nishida E.
        Regulation of MAP kinases by MAP kinase phosphatases.
        Biochim Biophys Acta. 2007; 1773: 1227-1237
        • Chaturvedi R.R.
        • Herron T.
        • Simmons R.
        • et al.
        Passive stiffness of myocardium from congenital heart disease and implications for diastole.
        Circulation. 2010; 121: 979-988
        • Liang H.
        • Zhang C.
        • Ban T.
        • et al.
        A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis.
        Int J Biochem Cell Biol. 2012; 44: 2152-2160
        • Liu G.
        • Friggeri A.
        • Yang Y.
        • et al.
        miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis.
        J Exp Med. 2010; 207: 1589-1597
        • Zhang Z.
        • Peng H.
        • Chen J.
        • et al.
        MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice.
        FEBS Lett. 2009; 583: 2009-2014
        • Dey N.
        • Ghosh-Choudhury N.
        • Kasinath B.S.
        • Choudhury G.G.
        TGFbeta-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signalling for mesangial cell hypertrophy and matrix expansion.
        PloS One. 2012; 7: e42316
        • Villar A.V.
        • Garcia R.
        • Merino D.
        • et al.
        Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients.
        Int J Cardiol. 2013; 167: 2875-2881
        • Ji R.
        • Cheng Y.
        • Yue J.
        • et al.
        MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation.
        Circ Res. 2007; 100: 1579-1588
        • Lin Y.
        • Liu X.
        • Cheng Y.
        • et al.
        Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells.
        J Biol Chem. 2009; 284: 7903-7913
        • Cheng Y.
        • Liu X.
        • Zhang S.
        • et al.
        MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4.
        J Mol Cell Cardiol. 2009; 47: 5-14
        • Li S.
        • Liang Z.
        • Xu L.
        • Zou F.
        MicroRNA-21: a ubiquitously expressed pro-survival factor in cancer and other diseases.
        Mol Cell Biochem. 2012; 360: 147-158
        • van Rooij E.
        The art of microRNA research.
        Circ Res. 2011; 108: 219-234
        • Cotsiki M.
        • Oehrl W.
        • Samiotaki M.
        • Theodosiou A.
        • Panayotou G.
        Phosphorylation of the M3/6 dual-specificity phosphatase enhances the activation of JNK by arsenite.
        Cell Signal. 2012; 24: 664-676
        • Hink R.L.
        • Hokanson J.E.
        • Shah I.
        • et al.
        Investigation of DUSP8 and CALCA in alcohol dependence.
        Addict Biol. 2003; 8: 305-312
        • Cargnello M.
        • Roux P.P.
        Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.
        Microbiol Mol Biol Rev. 2011; 75: 50-83
        • Goldberg H.
        • Whiteside C.
        • Fantus I.G.
        O-linked beta-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells.
        Am J Physiol Endocrinol Metab. 2011; 301: E713-E726
        • Tang M.
        • Zhang W.
        • Lin H.
        • et al.
        High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2.
        Mol Cell Biochem. 2007; 301: 109-114

      Linked Article

      • Erratum
        Canadian Journal of CardiologyVol. 31Issue 5
        • Preview
          In the December 2014 issue, the authors of the article by Liu et al., “Micro-RNA 21Targets Dual Specific Phosphatase 8 to Promote Collagen Synthesis in High Glucose–Treated Primary Cardiac Fibroblasts,” omitted the name of their funding source. The funding source should have been listed as follows:
        • Full-Text
        • PDF