Advertisement
Canadian Journal of Cardiology

Brain Natriuretic Peptide for Prevention of Contrast-Induced Nephropathy After Percutaneous Coronary Intervention or Coronary Angiography

Published:August 22, 2014DOI:https://doi.org/10.1016/j.cjca.2014.08.012

      Abstract

      Background

      Many methods reportedly prevent contrast-induced nephropathy (CIN), but the effect of brain natriuretic peptide (BNP) on CIN is unknown. In this study we investigated recombinant BNP use before coronary angiography (CA) or nonemergent percutaneous coronary intervention (PCI) in patients with unstable angina.

      Methods

      One thousand patients with unstable angina were prospectively evaluated. The patients were randomly assigned to: group A, isotonic normal saline (NaCl 0.9%, 1 mL/kg/h) for 24 hours before CA or PCI; and group B, human recombinant BNP (rhBNP; 0.005 μg/kg/min). Serum creatinine (Scr) levels and estimated glomerular filtration rate were measured before and 24, 48, and 72 hours, and 7 days after the procedure. The primary outcome was CIN incidence defined according to a relative (≥ 25%) or absolute (≥ 0.5 mg/dL and 44 μmol/L, respectively) increase in Scr from baseline within 48 hours. The secondary end points were the changes in the Scr and estimated glomerular filtration rate, before and after the procedure.

      Results

      Contrast volume, a history of diabetes mellitus, and BNP administration independently predicted CIN. The incidence of CIN was significantly greater in group A than in group B (14.8% vs 5.6%; P < 0.01). Renal function was less compromised in patients who received rhBNP. The Scr of all patients with CIN remained increased for 24 hours, but it was lower and recovered faster in patients who received rhBNP.

      Conclusions

      rhBNP administration before CA or PCI protects renal function and can significantly decrease CIN incidence.

      Résumé

      Introduction

      On rapporte que plusieurs méthodes préviennent la néphropathie induite par les produits de contraste (NIC), mais on ignore l’effet du peptide natriurétique de type B (BNP : brain natriuretic peptide) sur la NIC. Dans cette étude, nous avons examiné l’utilisation du BNP recombinant avant la coronarographie ou l’intervention coronarienne percutanée (ICP) non urgente chez les patients souffrant d’angine instable.

      Méthodes

      Mille (1000) patients souffrant d’angine instable ont été évalués de manière prospective. Les patients ont été répartis de manière aléatoire au : groupe A, solution saline isotonique normale (NaCl 0,9 %, 1 ml/kg/h) durant les 24 heures précédant la coronarographie ou l’ICP; groupe B, BNP humain recombinant (rhBNP; 0,005 μg/kg/min). Les concentrations de la créatinine sérique (SCr) et le débit de filtration glomérulaire estimé ont été mesurés avant l’intervention, après 24, 48 et 72 heures, ainsi qu’après 7 jours. Le critère d’évaluation principal était l’incidence de la NIC définie par l’augmentation relative (≥ 25 %) ou absolue (≥ 0,5 mg/dl et 44 μmol/l, respectivement) de la SCr par rapport à la valeur de base survenant dans les 48 heures. Les critères d’évaluation secondaires étaient les changements de la SCr et du débit de filtration glomérulaire estimé avant et après l’intervention.

      Résultats

      Le volume du produit de contraste, les antécédents de diabète et l’administration de BNP prédisaient indépendamment la NIC. L’incidence de la NIC était significativement plus grande dans le groupe A que dans le groupe B (14,8 % vs 5,6 %; P < 0,01). Le fonctionnement rénal était moins compromis chez les patients qui recevaient le rhBNP. La SCr des patients souffrant d’une NIC demeurait plus élevée durant 24 heures, mais était plus basse et se rétablissait plus rapidement chez les patients qui recevaient le rhBNP.

      Conclusions

      L’administration de rhBNP avant la coronarographie ou l’ICP protège la fonction rénale et peut diminuer de manière significative l’incidence de NIC.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jabara R.
        • Gadesam R.R.
        • Pendyala L.K.
        • et al.
        Impact of the definition utilized on the rate of contrast-induced nephropathy in percutaneous coronary intervention.
        Am J Cardiol. 2009; 103: 1657-1662
        • Solomon R.
        Contrast-induced acute kidney injury (CIAKI).
        Radiol Clin North Am. 2009; 47 (v): 783-788
        • Dangas G.
        • Iakovou I.
        • Nikolsky E.
        • et al.
        Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables.
        Am J Cardiol. 2005; 95: 13-19
        • Marenzi G.
        • Lauri G.
        • Assanelli E.
        • et al.
        Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction.
        J Am Coll Cardiol. 2004; 44: 1780-1785
        • Subramanian S.
        • Tumlin J.
        • Bapat B.
        • Zyczynski T.
        Economic burden of contrast-induced nephropathy: implications for prevention strategies.
        J Med Econ. 2007; 10: 119-134
        • Lindsay J.
        • Apple S.
        • Pinnow E.E.
        • et al.
        Percutaneous coronary intervention-associated nephropathy foreshadows increased risk of late adverse events in patients with normal baseline serum creatinine.
        Catheter Cardiovasc Interv. 2003; 59: 338-343
        • Katzberg R.W.
        • Lamba R.
        Contrast-induced nephropathy after intravenous administration: fact or fiction?.
        Radiol Clin North Am. 2009; 47 (v): 789-800
        • Arkouche W.
        • Brillet G.
        • Cao-Huu T.
        • et al.
        Recommendations for prevention of contrast-media induced nepropathy.
        Nephrologie. 2004; 25 ([in French]): 149-150
        • Mehran R.
        • Aymong E.D.
        • Nikolsky E.
        • et al.
        A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation.
        J Am Coll Cardiol. 2004; 44: 1393-1399
        • Stacul F.
        • van der Molen A.J.
        • Reimer P.
        • et al.
        Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines.
        Eur Radiol. 2011; 21: 2527-2541
        • Sahin I.
        • Gungor B.
        • Can M.M.
        • et al.
        Lower blood vitamin D levels are associated with an increased incidence of contrast-induced nephropathy in patients undergoing coronary angiography.
        Can J Cardiol. 2014; 30: 428-433
        • Katzberg R.W.
        Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity.
        Radiology. 1997; 204: 297-312
        • Tumlin J.
        • Stacul F.
        • Adam A.
        • et al.
        Pathophysiology of contrast-induced nephropathy.
        Am J Cardiol. 2006; 98: 14K-20K
        • Nyman U.
        • Bjork J.
        • Aspelin P.
        • Marenzi G.
        Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention.
        Acta Radiol. 2008; 49: 658-667
        • Aspelin P.
        • Aubry P.
        • Fransson S.G.
        • et al.
        Nephrotoxic effects in high-risk patients undergoing angiography.
        N Engl J Med. 2003; 348: 491-499
        • Solomon R.
        • Dumouchel W.
        Contrast media and nephropathy: findings from systematic analysis and Food and Drug Administration reports of adverse effects.
        Invest Radiol. 2006; 41: 651-660
        • Briguori C.
        • Airoldi F.
        • D'Andrea D.
        • et al.
        Renal Insufficiency Following Contrast Media Administration Trial (REMEDIAL): a randomized comparison of 3 preventive strategies.
        Circulation. 2007; 115: 1211-1217
        • Briguori C.
        • Visconti G.
        • Focaccio A.
        • et al.
        Renal Insufficiency After Contrast Media Administration Trial II (REMEDIAL II): RenalGuard System in high-risk patients for contrast-induced acute kidney injury.
        Circulation. 2011; 124: 1260-1269
        • Marenzi G.
        • Ferrari C.
        • Marana I.
        • et al.
        Prevention of contrast nephropathy by furosemide with matched hydration: the MYTHOS (Induced Diuresis With Matched Hydration Compared to Standard Hydration for Contrast Induced Nephropathy Prevention) trial.
        JACC Cardiovasc Interv. 2012; 5: 90-97
        • Drager L.F.
        • Andrade L.
        • Barros de Toledo J.F.
        • et al.
        Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury.
        Nephrol Dial Transplant. 2004; 19: 1803-1807
        • Zhang T.
        • Shen L.H.
        • Hu L.H.
        • He B.
        Statins for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis.
        Am J Nephrol. 2011; 33: 344-351
        • Koch J.A.
        • Plum J.
        • Grabensee B.
        • Modder U.
        Prostaglandin E1: a new agent for the prevention of renal dysfunction in high risk patients caused by radiocontrast media? PGE1 Study Group.
        Nephrol Dial Transplant. 2000; 15: 43-49
        • Abassi Z.
        • Karram T.
        • Ellaham S.
        • Winaver J.
        • Hoffman A.
        Implications of the natriuretic peptide system in the pathogenesis of heart failure: diagnostic and therapeutic importance.
        Pharmacol Ther. 2004; 102: 223-241
        • Kapoun A.M.
        • Liang F.
        • O'Young G.
        • et al.
        B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation.
        Circ Res. 2004; 94: 453-461
        • Colucci W.S.
        • Elkayam U.
        • Horton D.P.
        • et al.
        Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group.
        N Engl J Med. 2000; 343: 246-253
        • Boerrigter G.
        • Burnett Jr., J.C.
        Recent advances in natriuretic peptides in congestive heart failure.
        Expert Opin Investig Drugs. 2004; 13: 643-652
        • Houben A.J.
        • van der Zander K.
        • de Leeuw P.W.
        Vascular and renal actions of brain natriuretic peptide in man: physiology and pharmacology.
        Fundam Clin Pharmacol. 2005; 19: 411-419
        • Chen H.H.
        • Cataliotti A.
        • Schirger J.A.
        • Martin F.L.
        • Burnett Jr., J.C.
        Equimolar doses of atrial and brain natriuretic peptides and urodilatin have differential renal actions in overt experimental heart failure.
        Am J Physiol Regul Integr Comp Physiol. 2005; 288: R1093-R1097
        • Koda M.
        • Sakamoto A.
        • Ogawa R.
        Effects of atrial natriuretic peptide at a low dose on water and electrolyte metabolism during general anesthesia.
        J Clin Anesth. 2005; 17: 3-7
        • Sward K.
        • Valsson F.
        • Odencrants P.
        • Samuelsson O.
        • Ricksten S.E.
        Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial.
        Crit Care Med. 2004; 32: 1310-1315
        • Cigarroa R.G.
        • Lange R.A.
        • Williams R.H.
        • Hillis L.D.
        Dosing of contrast material to prevent contrast nephropathy in patients with renal disease.
        Am J Med. 1989; 86: 649-652
        • Zhang J.
        • Fu X.
        • Jia X.
        • et al.
        B-type natriuretic peptide for prevention of contrast-induced nephropathy in patients with heart failure undergoing primary percutaneous coronary intervention.
        Acta Radiol. 2010; 51: 641-648
        • Zhang J.
        • Fu X.H.
        • Fan X.N.
        • et al.
        The use of recombinant human B-type natriuretic peptide for the protection of cardiac and renal functions in heart failure patients with acute anterior myocardial infarction in peri-operative period of primary percutaneous coronary intervention.
        Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010; 22 ([in Chinese]): 669-673
        • Munagala V.K.
        • Burnett Jr., J.C.
        • Redfield M.M.
        The natriuretic peptides in cardiovascular medicine.
        Curr Probl Cardiol. 2004; 29: 707-769
        • Zhao Q.
        • Wu T.G.
        • Lin Y.
        • et al.
        Low-dose nesiritide improves renal function in heart failure patients following acute myocardial infarction.
        Heart Vessels. 2010; 25: 97-103
        • Lingegowda V.
        • Van Q.C.
        • Shimada M.
        • et al.
        Long-term outcome of patients treated with prophylactic nesiritide for the prevention of acute kidney injury following cardiovascular surgery.
        Clin Cardiol. 2010; 33: 217-221
        • He J.
        • Winterstein A.G.
        • Beaver T.M.
        Projecting the effect of nesiritide on dialysis and hospital mortality in cardiac surgery patients.
        Value Health. 2010; 13: 643-648
        • Kelesidis I.
        • Mazurek J.
        • Khullar P.
        • et al.
        The effect of nesiritide on renal function and other clinical parameters in patients with decompensated heart failure and preserved ejection fraction.
        Congest Heart Fail. 2012; 18: 158-164
        • Brunner-La Rocca H.P.
        • Kaye D.M.
        • Woods R.L.
        • Hastings J.
        • Esler M.D.
        Effects of intravenous brain natriuretic peptide on regional sympathetic activity in patients with chronic heart failure as compared with healthy control subjects.
        J Am Coll Cardiol. 2001; 37: 1221-1227
        • Burnett Jr., J.C.
        • Granger J.P.
        • Opgenorth T.J.
        Effects of synthetic atrial natriuretic factor on renal function and renin release.
        Am J Physiol. 1984; 247: F863-F866
        • Holmes S.J.
        • Espiner E.A.
        • Richards A.M.
        • Yandle T.G.
        • Frampton C.
        Renal, endocrine, and hemodynamic effects of human brain natriuretic peptide in normal man.
        J Clin Endocrinol Metab. 1993; 76: 91-96
        • Kohno M.
        • Yokokawa K.
        • Horio T.
        • et al.
        Atrial and brain natriuretic peptides inhibit the endothelin-1 secretory response to angiotensin II in porcine aorta.
        Circ Res. 1992; 70: 241-247
        • Kohno M.
        • Yasunari K.
        • Yokokawa K.
        • et al.
        Inhibition by atrial and brain natriuretic peptides of endothelin-1 secretion after stimulation with angiotensin II and thrombin of cultured human endothelial cells.
        J Clin Invest. 1991; 87: 1999-2004
        • Horio T.
        • Kohno M.
        • Takeda T.
        Effects of arginine vasopressin, angiotensin II and endothelin-1 on the release of brain natriuretic peptide in vivo and in vitro.
        Clin Exp Pharmacol Physiol. 1992; 19: 575-582
        • Cea L.B.
        Natriuretic peptide family: new aspects.
        Curr Med Chem Cardiovasc Hematol Agents. 2005; 3: 87-98