Advertisement
Canadian Journal of Cardiology

Effect of Nocturnal Intermittent Hypoxia on Left Atrial Appendage Flow Velocity in Atrial Fibrillation

Published:January 14, 2015DOI:https://doi.org/10.1016/j.cjca.2014.12.032

      Abstract

      Background

      The mechanism underlying the associations of sleep-disordered breathing (SDB) with stroke and atrial fibrillation (AF) is not well established. We explored the relationship between nocturnal intermittent hypoxia, a marker of SDB, and left atrial (LA)/LA appendage (LAA) function among AF patients.

      Methods

      We evaluated 134 consecutive AF candidates for catheter ablation (age, 59.6 ± 9.4 years; body mass index [BMI], 24.8 ± 3.2; Congestive Heart Failure, Hypertension, Age (≥75 years), Diabetes, Stroke/Transient Ischemic Attack, Vascular Disease, Age (65-74 years), Sex (Female) (CHA2DS2-VASc) score, 1.2 ± 1.1, paroxysmal AF, n = 83) using nocturnal pulse oximetry, a noninvasive screening method for nocturnal intermittent hypoxia. Based on 3% oxygen desaturation index (3% ODI), patients were divided into nocturnal intermittent hypoxia (3% ODI > 15; n = 32) and control groups (3% ODI ≤ 15; n = 102).

      Results

      The nocturnal intermittent hypoxia group demonstrated significantly higher weight, BMI, Congestive Heart Failure, Hypertension, Age, Diabetes, Stroke/Transient Ischemic Attack (CHADS2) and CHA2DS2-VASc scores, serum hemoglobin A1c and plasma brain natriuretic peptide levels, LA size, and prevalence of hypertension, vascular disease, and sick sinus syndrome. Echocardiographically, nocturnal intermittent hypoxia was associated with a higher grade of spontaneous echo contrast and low LAA flow velocity. Multiple regression analysis adjusted for type of AF, CHA2DS2-VASc score, BMI, plasma brain natriuretic peptide level, LA size, and rhythm on echocardiography revealed that 3% ODI was a factor independently associated with LAA flow velocity (β = −0.184; 95% confidence interval, −0.818 to −0.006).

      Conclusions

      Nocturnal intermittent hypoxia was an independent determinant for low LAA flow velocity in patients with AF, suggesting that the connection between SDB and LAA function might underlie the association of AF with stroke.

      Résumé

      Introduction

      Le mécanisme qui sous-tend l'association entre les troubles respiratoires du sommeil (TRS), et l'accident vasculaire cérébral et la fibrillation auriculaire (FA) n'est pas bien établi. Nous avons examiné le lien entre l'hypoxie intermittente nocturne, un marqueur des TRS, et le fonctionnement de l'oreillette gauche (OG) et de l'appendice auriculaire gauche (AAG) chez les patients souffrant de FA.

      Méthodes

      Nous avons évalué l'ablation par cathéter chez 134 candidats consécutifs souffrant de FA (âge, 59,6 ± 9,4 ans; indice de masse corporelle [IMC], 24,8 ± 3,2; score CHA2DS2-VASc [Congestive Heart Failure, Hypertension, Age, Diabetes, Stroke/Transient Ischemic Attack, Vascular Disease, Age (65-74 years), Sex (Female), soit l'insuffisance cardiaque congestive, l'hypertension, l’âge, le diabète, l'accident vasculaire cérébral/l'ischémie cérébrale transitoire, la maladie vasculaire, l’âge (65 à 74 ans), le sexe (féminin)], 1,2 ± 1,1, FA paroxystique, n = 83) à l'aide de l'oxymétrie de pouls nocturne, une méthode de dépistage non invasive de l'hypoxie intermittente nocturne. À partir de l'indice de désaturation en oxygène de 3 % (IDO de 3 %), les patients ont été divisés comme suit : hypoxie intermittente nocturne (IDO de 3 % > 15; n = 32) et groupes témoins (IDO de 3 % ≤ 15; n = 102).

      Résultats

      Le groupe souffrant d'hypoxie intermittente a démontré un poids, une IMC, un score CHADS2 (Congestive Heart Failure, Hypertension, Age, Diabetes, Stroke/Transient Ischemic Attack, soit l'insuffisance cardiaque congestive, l'hypertension, l’âge, le diabète, l'accident vasculaire cérébral/l'ischémie cérébrale transitoire) et un score CHA2DS2-VASc, une concentration sérique d'hémoglobine A1c et une concentration plasmatique du peptide natriurétique de type B, une taille de l’OG, et une prévalence de l'hypertension, de la maladie vasculaire et de la maladie du nœud sinusal significativement plus élevés. Échocardiographiquement, l'hypoxie intermittente nocturne a été associée à un degré plus élevé de contraste échographique spontané et à une vélocité du flux de l’AAG. L'analyse de régression multiple ajustée du type de FA, du score CHA2DS2-VASc, de l’IMC, de la concentration plasmatique du peptide natriurétique de type B, de la taille et du rythme de l’OG à l’échocardiographie a révélé que l’IDO de 3 % était un facteur indépendamment associé à la vélocité du flux de l’AAG (β = −0,184; intervalle de confiance à 95 %, −0,818 à −0,006).

      Conclusions

      L'hypoxie intermittente nocturne était un déterminant indépendant de la faible vélocité du flux de l’AAG chez les patients souffrant de FA, ce qui suggère que le lien entre les TRS et le fonctionnement de l’AAG pourrait sous-tendre l'association entre la FA et l'accident vasculaire cérébral.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Somers V.K.
        • White D.P.
        • Amin R.
        • et al.
        Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health).
        Circulation. 2008; 118: 1080-1111
        • Young T.
        • Shahar E.
        • Nieto F.J.
        • et al.
        Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study.
        Arch Intern Med. 2002; 162: 893-900
        • Valenza M.C.
        • Baranchuk A.
        • Valenza-Demet G.
        • et al.
        Prevalence of risk factors for atrial fibrillation and stroke among 1210 patients with sleep disordered breathing.
        Int J Cardiol. 2014; 174: 73-76
        • Bassetti C.
        • Aldrich M.S.
        Sleep apnea in acute cerebrovascular diseases: final report on 128 patients.
        Sleep. 1999; 22: 217-223
        • Gami A.S.
        • Pressman G.
        • Caples S.M.
        • et al.
        Association of atrial fibrillation and obstructive sleep apnea.
        Circulation. 2004; 110: 364-367
        • Gami A.S.
        • Hodge D.O.
        • Herges R.M.
        • et al.
        Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation.
        J Am Coll Cardiol. 2007; 49: 565-571
        • Shibazaki K.
        • Kimura K.
        • Uemura J.
        • et al.
        Atrial fibrillation is associated with severe sleep-disordered breathing in patients with ischaemic stroke and transient ischaemic attack.
        Eur J Neurol. 2013; 20: 266-270
        • Muñoz R.
        • Duran-Cantolla J.
        • Martinez-Vila E.
        • et al.
        Severe sleep apnea and risk of ischemic stroke in the elderly.
        Stroke. 2006; 37: 2317-2321
        • Wolf P.A.
        • Abbott R.D.
        • Kannel W.B.
        Atrial fibrillation as an independent risk factor for stroke: the Framingham Study.
        Stroke. 1991; 22: 983-988
        • Watson T.
        • Shantsila E.
        • Lip G.Y.
        Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited.
        Lancet. 2009; 373: 155-166
        • Dimitri H.
        • Ng M.
        • Brooks A.G.
        • et al.
        Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation.
        Heart Rhythm. 2012; 9: 321-327
        • Drager L.F.
        • Bortolotto L.A.
        • Pedrosa R.P.
        • Krieger E.M.
        • Lorenzi-Filho G.
        Left atrial diameter is independently associated with arterial stiffness in patients with obstructive sleep apnea: potential implications for atrial fibrillation.
        Int J Cardiol. 2010; 144: 257-259
        • Kim S.M.
        • Cho K.I.
        • Kwon J.H.
        • Lee H.G.
        • Kim T.I.
        Impact of obstructive sleep apnea on left atrial functional and structural remodeling beyond obesity.
        J Cardiol. 2012; 60: 475-483
        • Kanagala R.
        • Murali N.S.
        • Friedman P.A.
        • et al.
        Obstructive sleep apnea and the recurrence of atrial fibrillation.
        Circulation. 2003; 107: 2589-2594
        • Patel D.
        • Mohanty P.
        • Di Biase L.
        • et al.
        Safety and efficacy of pulmonary vein antral isolation in patients with obstructive sleep apnea: the impact of continuous positive airway pressure.
        Circ Arrhythm Electrophysiol. 2010; 3: 445-451
        • Ng C.Y.
        • Liu T.
        • Shehata M.
        • et al.
        Meta-analysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation.
        Am J Cardiol. 2011; 108: 47-51
        • Li L.
        • Wang Z.W.
        • Li J.
        • et al.
        Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a meta-analysis of observational studies.
        Europace. 2014; 16: 1309-1314
        • Fein A.S.
        • Shvilkin A.
        • Shah D.
        • et al.
        Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation.
        J Am Coll Cardiol. 2013; 62: 300-305
        • Naruse Y.
        • Tada H.
        • Satoh M.
        • et al.
        Concomitant obstructive sleep apnea increases the recurrence of atrial fibrillation following radiofrequency catheter ablation of atrial fibrillation: clinical impact of continuous positive airway pressure therapy.
        Heart Rhythm. 2013; 10: 331-337
        • Young T.
        • Palta M.
        • Dempsey J.
        • et al.
        The occurrence of sleep-disordered breathing among middle-aged adults.
        N Engl J Med. 1993; 328: 1230-1235
        • Tanigawa T.
        Obstructive sleep apnea: its prevention and screening may contribute to the prevention of hypertension, diabetes and cardiovascular diseases.
        EPMA J. 2011; 2: 83-89
        • Vazquez J.C.
        • Tsai W.H.
        • Flemons W.W.
        • et al.
        Automated analysis of digital oximetry in the diagnosis of obstructive sleep apnoea.
        Thorax. 2000; 55: 302-307
        • Tanigawa T.
        • Tachibana N.
        • Yamagishi K.
        • et al.
        Usual alcohol consumption and arterial oxygen desaturation during sleep.
        JAMA. 2004; 292: 923-925
        • Muraki I.
        • Tanigawa T.
        • Yamagishi K.
        • et al.
        Nocturnal intermittent hypoxia and the development of type 2 diabetes: the Circulatory Risk in Communities Study (CIRCS).
        Diabetologia. 2010; 53: 481-488
        • Nakamata M.K.Y.
        • Sakai K.
        • Kinebuchi S.
        • et al.
        The limitation of screening test for patients with sleep apnea syndrome using pulse oximetry.
        J Jpn Soc Respir Care. 2003; 12: 401-406
        • Gage B.F.
        • Waterman A.D.
        • Shannon W.
        • et al.
        Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation.
        JAMA. 2001; 285: 2864-2870
        • Lip G.Y.
        • Nieuwlaat R.
        • Pisters R.
        • Lane D.A.
        • Crijns H.J.
        Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on Atrial Fibrillation.
        Chest. 2010; 137: 263-272
        • January C.T.
        • Wann L.S.
        • Alpert J.S.
        • et al.
        2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society.
        J Am Coll Cardiol. 2014; 64: e1-76
        • Daniel W.G.
        • Nellessen U.
        • Schroder E.
        • et al.
        Left atrial spontaneous echo contrast in mitral valve disease: an indicator for an increased thromboembolic risk.
        J Am Coll Cardiol. 1988; 11: 1204-1211
        • Fatkin D.
        • Kelly R.P.
        • Feneley M.P.
        Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo.
        J Am Coll Cardiol. 1994; 23: 961-969
        • Iwasaki Y.K.
        • Kato T.
        • Xiong F.
        • et al.
        Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model.
        J Am Coll Cardiol. 2014; 64: 2013-2023
        • Iwasaki Y.K.
        • Shi Y.
        • Benito B.
        • et al.
        Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea.
        Heart Rhythm. 2012; 9: 1409-1416.e1
        • Linz D.
        • Schotten U.
        • Neuberger H.R.
        • Bohm M.
        • Wirth K.
        Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation.
        Heart Rhythm. 2011; 8: 1436-1443
        • Mehra R.
        • Benjamin E.J.
        • Shahar E.
        • et al.
        Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study.
        Am J Respir Crit Care Med. 2006; 173: 910-916
        • Guilleminault C.
        • Connolly S.J.
        • Winkle R.A.
        Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome.
        Am J Cardiol. 1983; 52: 490-494
        • Goldman M.E.
        • Pearce L.A.
        • Hart R.G.
        • et al.
        Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity in the left atrial appendage (The Stroke Prevention in Atrial Fibrillation [SPAF-III] study).
        J Am Soc Echocardiogr. 1999; 12: 1080-1087
        • Shamsuzzaman A.S.
        • Gersh B.J.
        • Somers V.K.
        Obstructive sleep apnea: implications for cardiac and vascular disease.
        JAMA. 2003; 290: 1906-1914