Canadian Journal of Cardiology
Review| Volume 31, ISSUE 5, P631-641, May 2015

Oxidative Stress and Human Hypertension: Vascular Mechanisms, Biomarkers, and Novel Therapies

Published:February 13, 2015DOI:


      Hypertension is a major cardiovascular risk factor. Of the many processes involved in the pathophysiology of hypertension, vascular damage due to oxidative stress (excess bioavailability of reactive oxygen species [ROS]) is particularly important. Physiologically, ROS regulate vascular function through redox-sensitive signalling pathways. In hypertension, oxidative stress promotes endothelial dysfunction, vascular remodelling, and inflammation, leading to vascular damage. Vascular ROS are derived primarily by nicotinamide adenine dinucleotide phosphate oxidases, which are prime targets for therapeutic development. Although experimental evidence indicates a causative role for oxidative stress in hypertension, human data are less convincing. This might relate, in part, to suboptimal methods to accurately assess the redox state. Herein we review current knowledge on oxidative stress in vascular pathobiology and implications in human hypertension. We also discuss biomarkers to assess the redox state in the clinic, highlight novel strategies to inhibit ROS production, and summarize how lifestyle modifications promote vascular health by reducing oxidative stress.


      L'hypertension est un facteur de risque cardiovasculaire majeur. Parmi les nombreux processus intervenant dans la physiopathologie de l'hypertension, les lésions vasculaires dues au stress oxydatif (biodisponibilité excessive des espèces réactives de l'oxygène [ERO]) sont particulièrement importantes. Physiologiquement, les ERO régulent la fonction vasculaire par les voies de signalisation sensibles à l’état redox. Dans l'hypertension, le stress oxydatif qui favorise la dysfonction endothéliale, le remodelage vasculaire et l'inflammation entraîne les lésions vasculaires. Les ERO vasculaires proviennent principalement des oxydases du nicotinamide-adénine-dinucléotide-phosphate, qui sont les cibles de choix du développement thérapeutique. Bien que les données probantes expérimentales montrent que le stress oxydatif joue un rôle causal dans l'hypertension, les données sur l’être humain sont moins convaincantes. Cela pourrait en partie avoir un lien avec les méthodes qui sont sous-optimales pour évaluer avec précision l’état redox. Ici, nous passons en revue les connaissances actuelles sur la pathobiologie vasculaire et les conséquences liées au stress oxydatif sur l'hypertension chez les êtres humains. Nous discutons également des biomarqueurs pour évaluer l’état redox en clinique, soulignons les nouvelles stratégies pour inhiber la production d’ERO et résumons comment les modifications au mode de vie favorisent la santé vasculaire en réduisant le stress oxydatif.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Sliwa K.
        • Stewart S.
        • Gersh B.J.
        Hypertension: a global perspective.
        Circulation. 2011; 123: 2892-2896
        • Bauer U.E.
        • Briss P.A.
        • Goodman R.A.
        • Bowman B.A.
        Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA.
        Lancet. 2014; 384: 45-52
        • Dodhia H.
        • Phillips K.
        • Zannou M.I.
        • Airoldi M.
        • Bevan G.
        Modelling the impact on avoidable cardiovascular disease burden and costs of interventions to lower SBP in the England population.
        J Hypertens. 2012; 30: 217-226
        • Savoia C.
        • Burger D.
        • Nishigaki N.
        • Montezano A.
        • Touyz R.M.
        Angiotensin II and the vascular phenotype in hypertension.
        Expert Rev Mol Med. 2011; 13: e11
        • Montezano A.C.
        • Nguyen Dinh Cat A.
        • Rios F.J.
        • Touyz R.M.
        Angiotensin II and vascular injury.
        Curr Hypertens Rep. 2014; 16: 431
        • Xiao L.
        • Liu Y.
        • Wang N.
        New paradigms in inflammatory signaling in vascular endothelial cells.
        Am J Physiol Heart Circ Physiol. 2014; 306: H317-H325
        • Schiffrin E.L.
        Vascular remodeling in hypertension: mechanisms and treatment.
        Hypertension. 2012; 59: 367-374
        • Xu S.
        • He Y.
        • Vokurkova M.
        • Touyz R.M.
        Endothelial cells negatively modulate reactive oxygen species generation in vascular smooth muscle cells: role of thioredoxin.
        Hypertension. 2009; 54: 427-433
        • Vukelic S.
        • Griendling K.K.
        Angiotensin II, from vasoconstrictor to growth factor: a paradigm shift.
        Circ Res. 2014; 114: 754-757
        • Gray S.P.
        • Di Marco E.
        • Okabe J.
        • et al.
        NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis.
        Circulation. 2013; 127: 1888-1902
        • Nguyen Dinh Cat A.
        • Montezano A.C.
        • Burger D.
        • Touyz R.M.
        Angiotensin II, NADPH oxidase, and redox signaling in the vasculature.
        Antioxid Redox Signal. 2013; 19: 1110-1120
        • Dikalov S.I.
        • Ungvari Z.
        Role of mitochondrial oxidative stress in hypertension.
        Am J Physiol Heart Circ Physiol. 2013; 305: H1417-H1427
        • Araujo M.
        • Wilcox C.S.
        Oxidative stress in hypertension: role of the kidney.
        Antioxid Redox Signal. 2014; 20: 74-101
        • Callera G.E.
        • Tostes R.C.
        • Yogi A.
        • Montezano A.C.
        • Touyz R.M.
        Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms.
        Clin Sci (Lond). 2006; 110: 243-253
        • Montezano A.C.
        • Touyz R.M.
        Oxidative stress, Noxs, and hypertension: experimental evidence and clinical controversies.
        Ann Med. 2012; 44: S2-16
        • Schiffrin E.L.
        Antioxidants in hypertension and cardiovascular disease.
        Mol Interv. 2010; 10: 354-362
        • Juraschek S.P.
        • Guallar E.
        • Appel L.J.
        • Miller 3rd, E.R.
        Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials.
        Am J Clin Nutr. 2012; 95: 1079-1088
        • Jones D.P.
        • Radi R.
        Redox pioneer: professor Helmut Sies.
        Antioxid Redox Signal. 2014; 21: 2459-2468
        • Lushchak V.I.
        Free radicals, reactive oxygen species, oxidative stress and its classification.
        Chem Biol Interact. 2014; 224C: 164-175
        • Jones D.P.
        Redefining oxidative stress.
        Antioxid Redox Signal. 2006; 8: 1865-1867
        • Go Y.M.
        • Jones D.P.
        Redox biology: interface of the exposome with the proteome, epigenome and genome.
        Redox Biol. 2014; 2: 358-360
        • Ray P.D.
        • Huang B.W.
        • Tsuji Y.
        Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.
        Cell Signal. 2012; 24: 981-990
        • Bretón-Romero R.
        • Lamas S.
        Hydrogen peroxide signaling in vascular endothelial cells.
        Redox Biol. 2014; 2: 529-534
        • Go Y.M.
        • Jones D.P.
        Cysteine/cystine redox signaling in cardiovascular disease.
        Free Radic Biol Med. 2011; 50: 495-509
        • Go Y.M.
        • Jones D.P.
        Thiol/disulfide redox states in signaling and sensing.
        Crit Rev Biochem Mol Biol. 2013; 48: 173-181
        • Jones D.P.
        • Go Y.M.
        Redox compartmentalization and cellular stress.
        Diabetes Obes Metab. 2010; 12: 116-125
        • Jones D.P.
        Radical-free biology of oxidative stress.
        Am J Physiol Cell Physiol. 2008; 295: C849-C868
        • Wei Z.
        • Salmon R.M.
        • Upton P.D.
        • Morrell N.W.
        • Li W.
        Regulation of bone morphogenetic protein 9 (BMP9) by redox-dependent proteolysis.
        J Biol Chem. 2014; 289: 31150-31159
        • Vikram A.
        • Kim Y.R.
        • Kumar S.
        • et al.
        Canonical Wnt signaling induces vascular endothelial dysfunction via p66Shc-regulated reactive oxygen species.
        Arterioscler Thromb Vasc Biol. 2014; 34: 2301-2309
        • Spescha R.D.
        • Glanzmann M.
        • Simic B.
        • et al.
        Adaptor protein p66(Shc) mediates hypertension-associated, cyclic stretch-dependent, endothelial damage.
        Hypertension. 2014; 64: 347-353
        • Tabet F.
        • Schiffrin E.L.
        • Touyz R.M.
        Mitogen-activated protein kinase activation by hydrogen peroxide is mediated through tyrosine kinase-dependent, protein kinase C-independent pathways in vascular smooth muscle cells: upregulation in spontaneously hypertensive rats.
        J Hypertens. 2005; 23: 2005-2012
        • Chatterjee S.
        • Fisher A.B.
        Mechanotransduction in the endothelium: role of membrane proteins and reactive oxygen species in sensing, transduction, and transmission of the signal with altered blood flow.
        Antioxid Redox Signal. 2014; 20: 899-913
        • Wong W.T.
        • Tian X.Y.
        • Huang Y.
        Endothelial dysfunction in diabetes and hypertension: cross talk in RAS, BMP4, and ROS-dependent COX-2-derived prostanoids.
        J Cardiovasc Pharmacol. 2013; 61: 204-214
        • Hernanz R.
        • Briones A.M.
        • Salaices M.
        • Alonso M.J.
        New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension.
        Clin Sci (Lond). 2014; 126: 111-121
        • Martínez-Revelles S.
        • Avendaño M.S.
        • García-Redondo A.B.
        • et al.
        Reciprocal relationship between reactive oxygen species and cyclooxygenase-2 and vascular dysfunction in hypertension.
        Antioxid Redox Signal. 2013; 18: 51-65
        • García-Redondo A.B.
        • Briones A.M.
        • Martínez-Revelles S.
        • et al.
        c-Src, ERK1/2 and Rho kinase mediate hydrogen peroxide-induced vascular contraction in hypertension: role of TXA2, NAD(P)H oxidase and mitochondria.
        J Hypertens. 2015; 33: 77-87
        • Spiegelberg B.D.
        G protein coupled-receptor signaling and reversible lysine acetylation.
        J Recept Signal Transduct Res. 2013; 33: 261-266
        • Ushio-Fukai M.
        Vascular signaling through G protein-coupled receptors: new concepts.
        Curr Opin Nephrol Hypertens. 2009; 18: 153-159
        • Mochin M.T.
        • Underwood K.F.
        • Cooper B.
        • et al.
        Hyperglycemia and redox status regulate RUNX2 DNA-binding and an angiogenic phenotype in endothelial cells.
        Microvasc Res. 2015; 97: 55-64
        • San Martin A.
        • Griendling K.K.
        NADPH oxidases: progress and opportunities.
        Antioxid Redox Signal. 2014; 20: 2692-2694
        • Montezano A.C.
        • Touyz R.M.
        Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research.
        Antioxid Redox Signal. 2014; 20: 164-182
        • Lassegue B.
        • Clempus R.E.
        Vascular NAD(P)H oxidases: specific features, expression, and regulation.
        Am J Physiol Regul Integr Comp Physiol. 2003; 285: R277-R297
        • Konior A.
        • Schramm A.
        • Czesnikiewicz-Guzik M.
        • Guzik T.J.
        NADPH oxidases in vascular pathology.
        Antioxid Redox Signal. 2014; 20: 2794-2814
        • Schulz E.
        • Wenzel P.
        • Münzel T.
        • Daiber A.
        Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress.
        Antioxid Redox Signal. 2014; 20: 308-324
        • Brandes R.P.
        • Weissmann N.
        • Schröder K.
        Nox family NADPH oxidases: molecular mechanisms of activation.
        Free Radic Biol Med. 2014; 76C: 208-226
        • Laurindo F.R.
        • Araujo T.L.
        • Abrahão T.B.
        Nox NADPH oxidases and the endoplasmic reticulum.
        Antioxid Redox Signal. 2014; 20: 2755-2775
        • Lambeth J.D.
        • Neish A.S.
        Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited.
        Annu Rev Pathol. 2014; 9: 119-145
        • Montezano A.C.
        • Burger D.
        • Ceravolo G.S.
        • et al.
        Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5.
        Clin Sci (Lond). 2011; 120: 131-141
        • Montezano A.C.
        • Burger D.
        • Paravicini T.M.
        • et al.
        Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells.
        Circ Res. 2010; 106: 1363-1373
        • Hahn N.E.
        • Meischl C.
        • Kawahara T.
        • et al.
        NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans.
        Am J Pathol. 2012; 180: 2222-2229
        • Touyz R.M.
        • Yao G.
        • Quinn M.T.
        • Pagano P.J.
        • Schiffrin E.L.
        p47phox associates with the cytoskeleton through cortactin in human vascular smooth muscle cells: role in NAD(P)H oxidase regulation by angiotensin II.
        Arterioscler Thromb Vasc Biol. 2005; 25: 512-518
        • Touyz R.M.
        • Yao G.
        • Schiffrin E.L.
        c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells.
        Arterioscler Thromb Vasc Biol. 2003; 23: 981-987
        • Touyz R.M.
        • Schiffrin E.L.
        Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways.
        J Hypertens. 2001; 19: 1245-1254
        • Cantu-Medellin N.
        • Kelley E.E.
        Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation.
        Redox Biol. 2013; 1: 353-358
        • Berry C.E.
        • Hare J.M.
        Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications.
        J Physiol. 2004; 555: 589-606
        • Riegersperger M.
        • Covic A.
        • Goldsmith D.
        Allopurinol, uric acid, and oxidative stress in cardiorenal disease.
        Int Urol Nephrol. 2011; 43: 441-449
        • Fukai T.
        • Ushio-Fukai M.
        Superoxide dismutases: role in redox signaling, vascular function, and diseases.
        Antioxid Redox Signal. 2011; 15: 1583-1606
        • Qin Z.
        • Reszka K.J.
        • Fukai T.
        • Weintraub N.L.
        Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD.
        Transl Res. 2008; 151: 68-78
        • Maksimenko A.V.
        Experimental antioxidant biotherapy for protection of the vascular wall by modified forms of superoxide dismutase and catalase.
        Curr Pharm Des. 2005; 11: 2007-2016
        • Hayes J.D.
        • Dinkova-Kostova A.T.
        The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.
        Trends Biochem Sci. 2014; 39: 199-218
        • Hybertson B.M.
        • Gao B.
        • Bose S.K.
        • McCord J.M.
        Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation.
        Mol Aspects Med. 2011; 32: 234-246
        • Howden R.
        Nrf2 and cardiovascular defense.
        Oxid Med Cell Longev. 2013; 2013: 104308
        • Gomez-Guzman M.
        • Jimenez R.
        • Sanchez M.
        Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension.
        Free Rad Biol Med. 2012; 52: 70-79
        • Chen J.
        • Zhang Z.
        • Cai L.
        Diabetic cardiomyopathy and its prevention by nrf2: current status.
        Diabetes Metab J. 2014; 38: 337-345
        • Ahmad A.
        • Singhal U.
        • Hossain M.M.
        • Islam N.
        • Rizvi I.
        The role of the endogenous antioxidant enzymes and malondialdehyde in essential hypertension.
        J Clin Diagn Res. 2013; 7: 987-990
        • Rodrigo R.
        • Libuy M.
        • Feliú F.
        • Hasson D.
        Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage.
        Dis Markers. 2013; 35: 773-790
        • Ward N.C.
        • Hodgson J.M.
        • Puddey I.B.
        Oxidative stress in human hypertension: association with antihypertensive treatment, gender, nutrition, and lifestyle.
        Free Radic Biol Med. 2004; 36: 226-232
        • Ghasemzadeh N.
        • Patel R.S.
        • Eapen D.J.
        • et al.
        Oxidative stress is associated with increased pulmonary artery systolic pressure in humans.
        Hypertension. 2014; 63: 1270-1275
        • Carrizzo A.
        • Puca A.
        • Damato A.
        • et al.
        Resveratrol improves vascular function in patients with hypertension and dyslipidemia by modulating NO metabolism.
        Hypertension. 2013; 62: 359-366
        • Holowatz L.A.
        • Kenney W.L.
        Local ascorbate administration augments NO- and non-NO-dependent reflex cutaneous vasodilation in hypertensive humans.
        Am J Physiol Heart Circ Physiol. 2007; 293: H1090-H1096
        • Kurlak L.O.
        • Green A.
        • Loughna P.
        • Broughton Pipkin F.
        Oxidative stress markers in hypertensive states of pregnancy: preterm and term disease.
        Front Physiol. 2014; 5: 310
        • González J.
        • Valls N.
        • Brito R.
        • Rodrigo R.
        Essential hypertension and oxidative stress: new insights.
        World J Cardiol. 2014; 6: 353-366
        • Eslami S.
        • Sahebkar A.
        Glutathione-S-transferase M1 and T1 null genotypes are associated with hypertension risk: a systematic review and meta-analysis of 12 studies.
        Curr Hypertens Rep. 2014; 16: 432
        • Rafiq A.
        • Aslam K.
        • Malik R.
        • Afroze D.
        C242T polymorphism of the NADPH oxidase p22PHOX gene and its association with endothelial dysfunction in asymptomatic individuals with essential systemic hypertension.
        Mol Med Rep. 2014; 9: 1857-1862
        • Rodrigo R.
        • Prat H.
        • Passalacqua W.
        • et al.
        Relationship between oxidative stress and essential hypertension.
        Hypertens Res. 2007; 30: 1159-1167
        • Loukogeorgakis S.P.
        • van den Berg M.J.
        • Sofat R.
        • et al.
        Role of NADPH oxidase in endothelial ischemia/reperfusion injury in humans.
        Circulation. 2010; 121: 2310-2316
        • Sibley C.T.
        • Estwick T.
        • Zavodni A.
        • et al.
        Assessment of atherosclerosis in chronic granulomatous disease.
        Circulation. 2014; 130: 2031-2039
        • Niki E.
        Biomarkers of lipid peroxidation in clinical material.
        Biochim Biophys Acta. 2014; 1840: 809-817
        • Lee R.
        • Margaritis M.
        • Channon K.M.
        • Antoniades C.
        Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations.
        Curr Med Chem. 2012; 19: 2504-2520
        • Del Rio D.
        • Stewart A.J.
        • Pellegrini N.
        A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress.
        Nutr Metab Cardiovasc Dis. 2005; 15: 316-328
        • Bairova T.A.
        • Kolesnikov S.I.
        • Kolesnikova L.I.
        • et al.
        Lipid peroxidation and mitochondrial superoxide dismutase-2 gene in adolescents with essential hypertension.
        Bull Exp Biol Med. 2014; 158: 181-184
        • Reis G.S.
        • Augusto V.S.
        • Silveira A.P.
        • et al.
        Oxidative-stress biomarkers in patients with pulmonary hypertension.
        Pulm Circ. 2013; 3: 856-861
        • Petramala L.
        • Pignatelli P.
        • Carnevale R.
        • et al.
        Oxidative stress in patients affected by primary aldosteronism.
        J Hypertens. 2014; 32: 2022-2029
        • Campos C.
        • Guzmán R.
        • López-Fernández E.
        • Casado Á.
        Urinary biomarkers of oxidative/nitrosative stress in healthy smokers.
        Inhal Toxicol. 2011; 23: 148-156
        • Davies S.S.
        • Roberts 2nd, L.J.
        F2-isoprostanes as an indicator and risk factor for coronary heart disease.
        Free Radic Biol Med. 2011; 50: 559-566
        • Basu S.
        Bioactive eicosanoids: role of prostaglandin F(2α) and F2-isoprostanes in inflammation and oxidative stress related pathology.
        Mol Cells. 2010; 30: 383-391
        • Spickett C.M.
        The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis.
        Redox Biol. 2013; 1: 145-152
        • Zhang Y.
        • Sano M.
        • Shinmura K.
        • et al.
        4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway.
        J Mol Cell Cardiol. 2010; 49: 576-586
        • Gerardi G.
        • Usberti M.
        • Martini G.
        • et al.
        Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation.
        Clin Chem Lab Med. 2002; 40: 104-110
        • Fraga C.G.
        • Oteiza P.I.
        • Galleano M.
        In vitro measurements and interpretation of total antioxidant capacity.
        Biochim Biophys Acta. 2014; 1840: 931-934
        • Pinchuk I.
        • Shoval H.
        • Dotan Y.
        • Lichtenberg D.
        Evaluation of antioxidants: scope, limitations and relevance of assays.
        Chem Phys Lipids. 2012; 165: 638-647
        • Wang Y.
        • Chun O.K.
        • Song W.O.
        Plasma and dietary antioxidant status as cardiovascular disease risk factors: a review of human studies.
        Nutrients. 2013; 5: 2969-3004
        • Shacter E.
        Quantification and significance of protein oxidation in biological samples.
        Drug Metab Rev. 2000; 32: 307-326
        • Jones D.A.
        • Prior S.L.
        • Barry J.D.
        • et al.
        Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.
        Diabetes Res Clin Pract. 2014; 106: 627-633
        • Baradaran A.
        • Nasri H.
        • Rafieian-Kopaei M.
        Oxidative stress and hypertension: possibility of hypertension therapy with antioxidants.
        J Res Med Sci. 2014; 19: 358-367
        • Ardalan M.R.
        • Rafieian-Kopaei M.
        Antioxidant supplementation in hypertension.
        J Renal Inj Prev. 2013; 3: 39-40
        • Drummond G.R.
        • Selemidis S.
        • Griendling K.K.
        • Sobey C.G.
        Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets.
        Nat Rev Drug Discov. 2011; 10: 453-457
        • Altenhöfer S.
        • Radermacher K.A.
        • Kleikers P.W.
        • Wingler K.
        • Schmidt H.H.
        Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement.
        Antioxid Redox Signal. 2014; ([e-pub ahead of print]. doi: 10.1089/ars.2013.5814, accessed February 26, 2014)
        • Cifuentes-Pagano E.
        • Csanyi G.
        • Pagano P.J.
        NADPH oxidase inhibitors: a decade of discovery from Nox2ds to HTS.
        Cell Mol Life Sci. 2012; 69: 2315-2325
        • Cifuentes-Pagano E.
        • Meijles D.N.
        • Pagano P.J.
        The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls.
        Antioxid Redox Signal. 2014; 20: 2741-2754
        • Ranayhossaini D.J.
        • Rodriguez A.I.
        • Sahoo S.
        • et al.
        Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration.
        J Biol Chem. 2013; 288: 36437-36450
        • Csányi G.
        • Pagano P.J.
        Strategies aimed at Nox4 oxidase inhibition employing peptides from Nox4 B-Loop and C-terminus and p22 (phox) N-terminus: an elusive target.
        Int J Hypertens. 2013; 2013: 842827
        • Agarwal V.
        • Hans N.
        • Messerli F.H.
        Effect of allopurinol on blood pressure: a systematic review and meta-analysis.
        J Clin Hypertens (Greenwich). 2013; 15: 435-442
        • Yamagishi S.
        • Ishibashi Y.
        • Ojima A.
        • Sugiura T.
        • Matsui T.
        Linagliptin, a xanthine-based dipeptidyl peptidase-4 inhibitor, decreases serum uric acid levels in type 2 diabetic patients partly by suppressing xanthine oxidase activity.
        Int J Cardiol. 2014; 176: 550-552
        • Wang Q.
        • Yang M.
        • Xu H.
        • Yu J.
        Tetrahydrobiopterin improves endothelial function in cardiovascular disease: a systematic review.
        Evid Based Complement Alternat Med. 2014; 2014: 850312
        • Battelli M.G.
        • Bolognesi A.
        • Polito L.
        Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme.
        Biochim Biophys Acta. 2014; 1842: 1502-1517
        • Higashi Y.
        • Sasaki S.
        • Nakagawa K.
        Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals.
        Am J Hypertens. 2002; 15: 326-332
        • Porkert M.
        • Sher S.
        • Reddy U.
        Tetrahydrobiopterin: a novel antihypertensive therapy.
        J Hum Hypertens. 2008; 22: 401-407
        • Wang Y.Y.
        • Yang Y.X.
        • Zhe H.
        • He Z.X.
        • Zhou S.F.
        Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties.
        Drug Des Devel Ther. 2014; 8: 2075-2088
        • de Zeeuw D.
        • Akizawa T.
        • Audhya P.
        • et al.
        Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.
        N Engl J Med. 2013; 369: 2492-2503
        • de Zeeuw D.
        • Akizawa T.
        • Agarwal R.
        • et al.
        Rationale and trial design of Bardoxolone Methyl Evaluation in Patients With Chronic Kidney Disease and Type 2 Diabetes: the Occurrence of Renal Events (BEACON).
        Am J Nephrol. 2013; 37: 212-222
        • Kweider N.
        • Wruck C.J.
        • Rath W.
        New insights into the pathogenesis of preeclampsia - the role of Nrf2 activators and their potential therapeutic impact.
        Geburtshilfe Frauenheilkd. 2013; 73: 1236-1240
        • Sánchez-Aranguren L.C.
        • Prada C.E.
        • Riaño-Medina C.E.
        • Lopez M.
        Endothelial dysfunction and preeclampsia: role of oxidative stress.
        Front Physiol. 2014; 5: 372
        • Fiuza-Luces C.
        • Garatachea N.
        • Berger N.A.
        • Lucia A.
        Exercise is the real polypill.
        Physiology (Bethesda). 2013; 28: 330-358
        • Houston M.
        The role of nutrition and nutraceutical supplements in the treatment of hypertension.
        World J Cardiol. 2014; 6: 38-66
        • Reuland D.J.
        • McCord J.M.
        • Hamilton K.L.
        The role of Nrf2 in the attenuation of cardiovascular disease.
        Exerc Sport Sci Rev. 2013; 41: 162-168
        • Ghiadoni L.
        • Taddei S.
        • Virdis A.
        Hypertension and endothelial dysfunction: therapeutic approach.
        Curr Vasc Pharmacol. 2012; 10: 42-60
        • Siervo M.
        • Lara J.
        • Chowdhury S.
        • et al.
        Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis.
        Br J Nutr. 2014; 28: 1-15
        • Maxwell S.
        • Greig L.
        Antioxidants- a protective role in cardiovascular disease?.
        Expert Opin Pharmacother. 2001; 2: 1737-1750
        • Dasgupta K.
        • Padwal R.
        • Poirier L.
        • Quinn R.R.
        • on behalf of the Canadian Hypertension Education Program Scientific Summary Writing Group
        Managing hypertension: evidence supporting the 2013/2014 recommendations of the Canadian Hypertension Education Program.
        CMAJ. 2015; 187: 116-119