Advertisement
Canadian Journal of Cardiology

Assessment of Dietary Sodium and Potassium in Canadians Using 24-Hour Urinary Collection

      Abstract

      Background

      Although salt intake derived from data on urinary sodium excretion in free-living populations has been used in public policy, a population study on urinary sodium excretion has not been done in Canada. We assessed dietary sodium and potassium intake using a 24-hour urine collection in a large survey of urban and rural communities from 4 Canadian cities and determined the association of these electrolytes with blood pressure (BP).

      Methods

      One thousand seven hundred consecutive individuals, aged 37-72 years, attending their annual follow-up visits of the ongoing Prospective and Urban Rural Epidemiology (PURE) study in Vancouver, Hamilton, Ottawa, and Quebec City, Canada, collected a 24-hour urine sample using standardized procedures.

      Results

      Mean sodium excretion was 3325 mg/d and mean potassium excretion was 2935 mg/d. Sodium excretion ranged from 3093 mg/d in Vancouver to 3642 mg/d in Quebec City, after adjusting for covariates. Potassium excretion ranged from 2844 mg/d in Ottawa to 3082 mg/d in Quebec City. Both electrolytes were higher in men than in women and in rural populations than in urban settings (P < 0.001 for all). Sodium excretion was between 3000 and 6000 mg/d in 48.3% of the participants, < 3000 mg/d in 46.7%, and > 6000 mg/d in only 5%. No significant association between sodium or potassium excretion and BP was found.

      Conclusions

      Sodium consumption in these Canadians is within a range comparable to other Western countries, and intake in most individuals is < 6000 mg/d, with only 5% at higher levels. Within this range, sodium or potassium levels were not associated with BP.

      Résumé

      Introduction

      Bien que l’apport en sel provenant des données sur l’excrétion urinaire de sodium des populations d’individus autonomes ait été utilisé dans les politiques publics, aucune étude de population sur l’excrétion urinaire de sodium n’a été réalisée au Canada. Nous avons évalué l’apport alimentaire en sodium et en potassium à partir d’un recueil des urines des 24 heures dans une vaste enquête réalisée auprès de collectivités urbaines et rurales de 4 villes canadiennes et déterminé l’association de ces électrolytes à la pression artérielle (PA).

      Méthodes

      Mille sept cents individus consécutifs âgés de 37 à 72 ans allant à leurs visites de suivi annuelles de l’étude PURE (Prospective and Urban Rural Epidemiology) en cours à Vancouver, à Hamilton, à Ottawa et à Québec, au Canada, ont recueilli des échantillons de leurs urines des 24 heures selon les protocoles standardisés.

      Résultats

      L’excrétion moyenne de sodium était de 3325 mg par jour et l’excrétion moyenne de potassium était de 2935 mg par jour. L’excrétion de sodium variait de 3093 mg par jour à Vancouver à 3642 mg par jour à Québec après l’ajustement des covariables. L’excrétion de potassium variait de 2844 mg par jour à Ottawa à 3082 mg par jour à Québec. Les deux électrolytes étaient plus élevés chez les hommes que chez les femmes et dans les populations rurales que dans les populations urbaines (P < 0,001 pour tous). L’excrétion de sodium était entre 3000 et 6000 mg par jour chez 48,3 % des participants, < 3000 mg par jour chez 46,7 % des participants et > 6000 mg par jour chez 5 % des participants seulement. Nous n’avons observé aucune association significative entre l’excrétion de sodium ou de potassium et la PA.

      Conclusions

      La consommation de sodium chez ces Canadiens se situe dans une fourchette comparable à d’autres pays occidentaux, puis l’apport chez la plupart des individus était < 6000 mg par jour, seuls 5 % avaient des concentrations plus élevées. À l’intérieur de cette fourchette, les concentrations en sodium et en potassium n’étaient pas associées à la PA.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Appel L.J.
        • Frohlich E.D.
        • Hall J.E.
        • et al.
        The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association.
        Circulation. 2011; 123: 1138-1143
        • Mente A.
        • O'Donnell M.J.
        • Yusuf S.
        The population risks of dietary salt excess are exaggerated.
        Can J Cardiol. 2014; 30: 507-512
        • Neal B.
        Dietary salt is a public health hazard that requires vigorous attack.
        Can J Cardiol. 2014; 30: 502-506
        • O'Donnell M.J.
        • Xavier D.
        • Liu L.
        • et al.
        Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study.
        Lancet. 2010; 376: 112-123
        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • et al.
        Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet. 2004; 364: 937-952
        • Garriguet D.
        Sodium consumption at all ages.
        Health Rep. 2007; 18: 47-52
        • Garriguet D.
        Under-reporting of energy intake in the Canadian Community Health Survey.
        Health Rep. 2008; 19: 1-9
        • Bentley B.
        A review of methods to measure dietary sodium intake.
        J Cardiovasc Nurs. 2006; 21: 63-67
        • Swain J.F.
        • McCarron P.B.
        • Hamilton E.F.
        • Sacks F.M.
        • Appel L.J.
        Characteristics of the diet patterns tested in the optimal macronutrient intake trial to prevent heart disease (OmniHeart): options for a heart-healthy diet.
        J Am Diet Assoc. 2008; 108: 257-265
        • Young D.B.
        • Lin H.
        • McCabe R.D.
        Potassium's cardiovascular protective mechanisms.
        Am J Physiol. 1995; 268: R825-R837
        • Morris Jr., R.C.
        • Schmidlin O.
        • Frassetto L.A.
        • Sebastian A.
        Relationship and interaction between sodium and potassium.
        J Am Coll Nutr. 2006; 25: 262S-270S
        • Whelton P.K.
        • Buring J.
        • Borhani N.O.
        • et al.
        The effect of potassium supplementation in persons with a high-normal blood pressure. Results from phase I of the Trials of Hypertension Prevention (TOHP). Trials of Hypertension Prevention (TOHP) Collaborative Research Group.
        Ann Epidemiol. 1995; 5: 85-95
        • Krishna G.G.
        • Miller E.
        • Kapoor S.
        Increased blood pressure during potassium depletion in normotensive men.
        N Engl J Med. 1989; 320: 1177-1182
        • Teo K.
        • Chow C.K.
        • Vaz M.
        • Rangarajan S.
        • Yusuf S.
        • PURE Investigators-Writing Group
        The Prospective Urban Rural Epidemiology (PURE) study: examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries.
        Am Heart J. 2009; 158: 1-7.e1
        • Yusuf S.
        • Islam S.
        • Chow C.K.
        • et al.
        Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE Study): a prospective epidemiological survey.
        Lancet. 2011; 378: 1231-1243
        • Jakobsen J.
        • Ovesen L.
        • Fagt S.
        • Pedersen A.N.
        Para-aminobenzoic acid used as a marker for completeness of 24 hour urine: assessment of control limits for a specific HPLC method.
        Eur J Clin Nutr. 1997; 51: 514-519
        • Leclercq C.
        • Maiani G.
        • Polito A.
        • Ferro-Luzzi A.
        Use of PABA test to check completeness of 24-h urine collections in elderly subjects.
        Nutrition. 1991; 7: 350-354
        • Mann J.F.
        • Schmieder R.E.
        • McQueen M.
        • et al.
        Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial.
        Lancet. 2008; 372: 547-553
        • Clase C.M.
        • Gao P.
        • Tobe S.W.
        • et al.
        Estimated glomerular filtration rate and albuminuria as predictors of outcomes in patients with high cardiovascular risk: a cohort study.
        Ann Intern Med. 2011; 154: 310-318
        • Johansson G.
        • Bingham S.
        • Vahter M.
        A method to compensate for incomplete 24-hour urine collections in nutritional epidemiology studies.
        Public Health Nutr. 1999; 2: 587-591
        • Curhan G.C.
        • Willett W.C.
        • Speizer F.E.
        • Stampfer M.J.
        Twenty-four-hour urine chemistries and the risk of kidney stones among women and men.
        Kidney Int. 2001; 59: 2290-2298
        • Priddle W.W.
        Hypertension—sodium and potassium studies.
        Can Med Assoc J. 1962; 86: 1-9
        • INTERSALT Cooperative Research Group
        INTERSALT: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion.
        BMJ. 1988; 297: 319-328
        • Health and Welfare Canada
        Nutrition Canada—Food Consumptions Pattern Report.
        Canada, Ottawa1974
        • Powles J.
        • Fahimi S.
        • Micha R.
        • et al.
        Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide.
        BMJ Open. 2013; 3: e003733
        • Cogswell M.E.
        • Zhang Z.
        • Carriquiry A.L.
        • et al.
        Sodium and potassium intakes among US adults: NHANES 2003-2008.
        Am J Clin Nutr. 2012; 96: 647-657
        • Bernstein A.M.
        • Willett W.C.
        Trends in 24-h urinary sodium excretion in the United States, 1957-2003: a systematic review.
        Am J Clin Nutr. 2010; 92: 1172-1180
        • McCarron D.A.
        • Kazaks A.G.
        • Geerling J.C.
        • Stern J.S.
        • Graudal N.A.
        Normal range of human dietary sodium intake: a perspective based on 24-hour urinary sodium excretion worldwide.
        Am J Hypertens. 2013; 26: 1218-1223
        • He F.J.
        • Brinsden H.C.
        • MacGregor G.A.
        Salt reduction in the United Kingdom: a successful experiment in public health.
        J Hum Hypertens. 2014; 28: 345-352
        • Smith W.C.
        • Crombie I.K.
        • Tavendale R.T.
        • Gulland S.K.
        • Tunstall-Pedoe H.D.
        Urinary electrolyte excretion, alcohol consumption, and blood pressure in the Scottish heart health study.
        BMJ. 1988; 297: 329-330
        • McCarron D.A.
        • Morris C.D.
        • Henry H.J.
        • Stanton J.L.
        Blood pressure and nutrient intake in the United States.
        Science. 1984; 224: 1392-1398
        • Townsend M.S.
        • Fulgoni III, V.L.
        • Stern J.S.
        • Adu-Afarwuah S.
        • McCarron D.A.
        Low mineral intake is associated with high systolic blood pressure in the Third and Fourth National Health and Nutrition Examination Surveys: could we all be right?.
        Am J Hypertens. 2005; 18: 261-269
        • Mente A.
        • O'Donnell M.J.
        • Dagenais G.
        • et al.
        Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries.
        J Hypertens. 2014; 32: 1005-1014
        • Mente A.
        • O'Donnell M.J.
        • Rangarajan S.
        • et al.
        Association of urinary sodium and potassium excretion with blood pressure.
        N Engl J Med. 2014; 371: 601-611
        • Graudal N.A.
        • Hubeck-Graudal T.
        • Jurgens G.
        Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride.
        Cochrane Database Syst Rev. 2011; 11: CD004022
        • Appel L.J.
        • Moore T.J.
        • Obarzanek E.
        • et al.
        A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group.
        N Engl J Med. 1997; 336: 1117-1124
        • Sacks F.M.
        • Svetkey L.P.
        • Vollmer W.M.
        • et al.
        Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group.
        N Engl J Med. 2001; 344: 3-10
        • Mente A.
        • Irvine E.J.
        • Honey R.J.
        • Logan A.G.
        Urinary potassium is a clinically useful test to detect a poor quality diet.
        J Nutr. 2009; 139: 743-749
        • Tunstall-Pedoe H.
        • Woodward M.
        • Tavendale R.
        • A’Brook R.
        • McCluskey M.K.
        Comparison of the prediction by 27 different factors of coronary heart disease and death in men and women of the Scottish Heart Health Study: cohort study.
        BMJ. 1997; 315: 722-729
        • Aburto N.J.
        • Hanson S.
        • Gutierrez H.
        • et al.
        Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses.
        BMJ. 2013; 346: f1378
        • O'Donnell M.
        • Mente A.
        • Rangarajan S.
        • et al.
        Urinary sodium and potassium excretion, mortality, and cardiovascular events.
        N Engl J Med. 2014; 371: 612-623
        • Tanase C.M.
        • Koski K.G.
        • Laffey P.J.
        • Cooper M.J.
        • Cockell K.A.
        Canadians continue to consume too much sodium and not enough potassium.
        Can J Public Health. 2011; 102: 164-168
        • Luft F.C.
        • Fineberg N.S.
        • Sloan R.S.
        Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake.
        Hypertension. 1982; 4: 805-808
        • Dyer A.R.
        • Elliott P.
        • Shipley M.
        Urinary electrolyte excretion in 24 hours and blood pressure in the INTERSALT Study. II. Estimates of electrolyte-blood pressure associations corrected for regression dilution bias. The INTERSALT Cooperative Research Group.
        Am J Epidemiol. 1994; 139: 940-951
        • Espeland M.A.
        • Kumanyika S.
        • Wilson A.C.
        • et al.
        Statistical issues in analyzing 24-hour dietary recall and 24-hour urine collection data for sodium and potassium intakes.
        Am J Epidemiol. 2001; 153: 996-1006
        • Cook N.R.
        • Kumanyika S.K.
        • Cutler J.A.
        Effect of change in sodium excretion on change in blood pressure corrected for measurement error. The Trials of Hypertension Prevention, Phase I..
        Am J Epidemiol. 1998; 148: 431-444
        • Rakova N.
        • Jüttner K.
        • Dahlmann A.
        • et al.
        Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance.
        Cell Metab. 2013; 17: 125-131
        • Titze J.
        • Müller D.N.
        • Luft F.C.
        Taking another “look” at sodium.
        Can J Cardiol. 2014; 30: 473-475