Advertisement
Canadian Journal of Cardiology
Clinical Research| Volume 32, ISSUE 3, P355-361, March 2016

Download started.

Ok

Cardiopulmonary Bypass Increases Plasma Glial Fibrillary Acidic Protein Only in First Stage Palliation of Hypoplastic Left Heart Syndrome

      Abstract

      Background

      Univentricular congenital heart defects require open-heart surgery soon after birth, and are associated with risk of brain injury and poor neurologic outcome.

      Methods

      This is a prospective, observational study on children undergoing cardiac surgery. Plasma glial fibrillary acidic protein (GFAP), as an early marker of brain injury, was measured by ELISA at the end of anaesthesia induction, initiation of cardiopulmonary bypass (CPB), the end of cooling, the end of rewarming, the end of CPB, and after protamine administration. We recorded clinical and surgical parameters to assess which CPB phase and clinical parameters were associated with a GFAP increase.

      Results

      We studied 13 children less than 50 months of age: 8 underwent Norwood or Damus-Kaye-Stansel palliation (group 1) and 5 underwent Fontan procedure (group 2). A GFAP increase was only observed in group 1, with the highest median value at the end of rewarming. No quantifiable levels of GFAP were measured at pre-bypass and the start of CPB stages in all patients. End of cooling and CPB-end GFAP, GFAP maximum value, and GFAP area under the curve all correlated with the CPB time spent at a cerebral regional saturation < 45% (P = 0.021, 0.028, 0.007, 0.021, respectively).

      Conclusions

      Children with univentricular heart defects exhibit a CPB plasma-GFAP increase only after stage 1 palliation. The maximum GFAP increase occurred at the end of rewarming. Further studies are needed to identify which clinical or surgical parameter(s) could reflect a GFAP increase during surgery for congenital heart defects, and whether GFAP levels correlate with the neurologic outcome.

      Résumé

      Introduction

      Les malformations cardiaques congénitales univentriculaires nécessitent une intervention chirurgicale à cœur ouvert peu après la naissance, et sont associées à un risque de lésions cérébrales et à un mauvais pronostic neurologique.

      Méthodes

      Ceci est une étude observationnelle prospective sur les enfants subissant une chirurgie cardiaque. La protéine acide fibrillaire gliale (PAFG), en tant que marqueur précoce d'une lésion cérébrale, a été mesurée par ELISA à la fin de l’induction d’une anesthésie, à l'initiation de la circulation extracorporelle (CEC), à la fin du refroidissement, à la fin du réchauffement, à la fin de la CEC et après l'administration de protamine. Nous avons enregistré les paramètres cliniques et chirurgicaux pour évaluer quelle phase de la CEC et quels paramètres cliniques étaient associés avec une augmentation de la PAFG.

      Résultats

      Nous avons étudié le cas de 13 enfants âgés de moins de 50 mois : 8 ont subi une chirurgie palliative de Norwood ou Damus-Kaye-Stansel (groupe 1) et 5 ont subi une intervention de Fontan (groupe 2). Une augmentation de la PAFG a été observée uniquement dans le groupe 1, avec une valeur médiane la plus élevée lors de la fin du réchauffement. Aucun niveau quantifiable de PAFG n’a été mesuré avant dérivation et au début des étapes de la CEC pour tous les patients. La PAFG en fin de refroidissement et en fin de CEC, la valeur maximale de PAFG, et l’aire de PAFG sous la courbe sont toutes en corrélation avec le temps de CEC passé à une saturation cérébrale régionale <45 % (P = 0,021, 0,028, 0,007, 0,021, respectivement).

      Conclusions

      Les enfants atteints de malformations cardiaques univentriculaires présentent une augmentation de la PAFG plasmatique lors de la CEC seulement après l'étape 1 de la chirurgie palliative. L'augmentation maximale de la PAFG a eu lieu à la fin du réchauffement. D'autres études sont nécessaires pour déterminer quel(s) paramètre(s) clinique ou chirurgical pourrait refléter une augmentation de la PAFG pendant la chirurgie pour des malformations cardiaques congénitales, et si les niveaux de PAFG corrèlent avec l'évolution neurologique.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoffman J.I.
        • Kaplan S.
        The incidence of congenital heart disease.
        J Am Coll Cardiol. 2002; 39: 1890-1900
        • Reller M.D.
        • Strickland M.J.
        • Riehle-Colarusso T.
        • Mahle W.T.
        • Correa A.
        Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005.
        J Pediatr. 2008; 153: 807-813
        • Biglino G.
        • Giardini A.
        • Hsia T.Y.
        • et al.
        Modeling single ventricle physiology: review of engineering tools to study first stage palliation of hypoplastic left heart syndrome.
        Front Pediatr. 2013; 1: 31
        • Dancea A.
        • Justino H.
        • Martucci G.
        Catheter intervention for congenital heart disease at risk of circulatory failure.
        Can J Cardiol. 2013; 29: 786-795
        • Agarwal H.S.
        • Wolfram K.B.
        • Saville B.R.
        • Donahue B.S.
        • Bichell D.P.
        Postoperative complications and association with outcomes in pediatric cardiac surgery.
        J Thorac Cardiovasc Surg. 2014; 148 (e601): 609-616
        • Mondesert B.
        • Marcotte F.
        • Mongeon F.P.
        • et al.
        Fontan circulation: success or failure?.
        Can J Cardiol. 2013; 29: 811-820
        • Majnemer A.
        • Limperopoulos C.
        • Shevell M.
        • et al.
        Developmental and functional outcomes at school entry in children with congenital heart defects.
        J Pediatr. 2008; 153: 55-60
        • du Plessis A.J.
        Mechanisms of brain injury during infant cardiac surgery.
        Semin Pediatr Neurol. 1999; 6: 32-47
        • Albers E.L.
        • Bichell D.P.
        • McLaughlin B.
        New approaches to neuroprotection in infant heart surgery.
        Pediatr Res. 2010; 68: 1-9
        • Bellinger D.C.
        • Jonas R.A.
        • Rappaport L.A.
        • et al.
        Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass.
        N Engl J Med. 1995; 332: 549-555
        • Eng L.F.
        • Ghirnikar R.S.
        • Lee Y.L.
        Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000).
        Neurochem Res. 2000; 25: 1439-1451
        • Hirsch J.C.
        • Jacobs M.L.
        • Andropoulos D.
        • et al.
        Protecting the infant brain during cardiac surgery: a systematic review.
        Ann Thorac Surg. 2012; 94 ([discussion: 1373]): 1365-1373
        • Schmitt B.
        • Bauersfeld U.
        • Schmid E.R.
        • et al.
        Serum and CSF levels of neuron-specific enolase (NSE) in cardiac surgery with cardiopulmonary bypass: a marker of brain injury?.
        Brain Dev. 1998; 20: 536-539
        • Wernovsky G.
        • Shillingford A.J.
        • Gaynor J.W.
        Central nervous system outcomes in children with complex congenital heart disease.
        Curr Opin Cardiol. 2005; 20: 94-99
        • Brunetti M.A.
        • Jennings J.M.
        • Easley R.B.
        • et al.
        Glial fibrillary acidic protein in children with congenital heart disease undergoing cardiopulmonary bypass.
        Cardiol Young. 2014; 24: 623-631
        • Donmez A.
        • Yurdakok O.
        Cardiopulmonary bypass in infants.
        J Cardiothorac Vasc Anesth. 2014; 28: 778-788
        • Gaynor J.W.
        The encephalopathy of congenital heart disease.
        J Thorac Cardiovasc Surg. 2014; 148: 1790-1791
        • Lynch J.M.
        • Buckley E.M.
        • Schwab P.J.
        • et al.
        Time to surgery and preoperative cerebral hemodynamics predict postoperative white matter injury in neonates with hypoplastic left heart syndrome.
        J Thorac Cardiovasc Surg. 2014; 148: 2181-2188
        • Erb M.A.
        • Heinemann M.K.
        • Wendel H.P.
        • et al.
        S-100 after correction of congenital heart defects in neonates: is it a reliable marker for cerebral damage?.
        Ann Thorac Surg. 2000; 69: 1515-1519
        • Franklin T.B.
        • Krueger-Naug A.M.
        • Clarke D.B.
        • Arrigo A.P.
        • Currie R.W.
        The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system.
        Int J Hyperthermia. 2005; 21: 379-392
        • Shaw G.
        • Yang C.
        • Ellis R.
        • et al.
        Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury.
        Biochem Biophys Res Commun. 2005; 336: 1268-1277
        • Massaro A.N.
        • Jeromin A.
        • Kadom N.
        • et al.
        Serum biomarkers of MRI brain injury in neonatal hypoxic ischemic encephalopathy treated with whole-body hypothermia: a pilot study.
        Pediatr Crit Care Med. 2013; 14: 310-317
        • Dvorak F.
        • Haberer I.
        • Sitzer M.
        • Foerch C.
        Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke.
        Cerebrovas Dis. 2009; 27: 37-41
        • Nylen K.
        • Ost M.
        • Csajbok L.Z.
        • et al.
        Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome.
        J Neurol Sci. 2006; 240: 85-91
        • Kaneko T.
        • Kasaoka S.
        • Miyauchi T.
        • et al.
        Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest.
        Resuscitation. 2009; 80: 790-794
        • Andropoulos D.B.
        • Brady K.M.
        • Easley R.B.
        • Fraser Jr., C.D.
        Neuroprotection in pediatric cardiac surgery: what is on the horizon?.
        Prog Pediatr Cardiol. 2010; 29: 113-122
        • Kaulitz R.
        • Hofbeck M.
        Current treatment and prognosis in children with functionally univentricular hearts.
        Arch Dis Child. 2005; 90: 757-762
        • Beca J.
        • Gunn J.K.
        • Coleman L.
        • et al.
        New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest.
        Circulation. 2013; 127: 971-979
        • Stewart A.
        • Tekes A.
        • Huisman T.A.
        • et al.
        Glial fibrillary acidic protein as a biomarker for periventricular white matter injury.
        Am J Obstet Gynecol. 2013; 209 (e21-27): 27
        • Agematsu K.
        • Korotcova L.
        • Scafidi J.
        • et al.
        Effects of preoperative hypoxia on white matter injury associated with cardiopulmonary bypass in a rodent hypoxic and brain slice model.
        Pediatr Res. 2014; 75: 618-625
        • Wypij D.
        • Newburger J.W.
        • Rappaport L.A.
        • et al.
        The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial.
        J Thorac Cardiovasc Surg. 2003; 126: 1397-1403
        • Rhee C.J.
        • Kibler K.K.
        • Brady K.M.
        • et al.
        Detection of neurologic injury using vascular reactivity monitoring and glial fibrillary acidic protein.
        Pediatrics. 2013; 131: e950-e954