Advertisement
Canadian Journal of Cardiology

Formation and Malformation of Cardiac Trabeculae: Biological Basis, Clinical Significance, and Special Yield of Magnetic Resonance Imaging in Assessment

      Abstract

      Adult and pediatric cardiologists are familiar with variation in cardiac trabeculation. Abnormal trabeculation is a key feature of left ventricular noncompaction, but it is also common in congenital heart diseases and in cardiomyopathies (dilated and hypertrophied). Trabeculae might be a measurable phenotypic marker that will allow insights into how cardiomyopathy and congenital heart disease arise and develop. This will require the linking together of clinical and preclinical information (such as embryology and genetics), with new analysis methods for trabecular quantitation. In adult cardiology several promising quantitative methods have been developed for echocardiography, computed tomography, and cardiovascular magnetic resonance, and earlier cross-sectional caliper approaches have now been refined to permit more advanced assessment. Adaptation of these methods for use in developmental biology might inform on better ways to measure and track trabecular morphology in model organisms.

      Résumé

      Les trabéculations cardiaques, tant chez l’enfant que chez l’adulte, sont un phénomène bien connu des cardiologues. En effet, la présence de trabéculations anormales est l’une des caractéristiques clés de la non-compaction ventriculaire gauche, mais se retrouve aussi dans de nombreuses cardiopathies congénitales et cardiomyopathies (dilatation/hypertrophie du cœur). Les trabéculations pourraient constituer des marqueurs mesurables du phénotype et offrir ainsi une perspective intéressante sur l’apparition et l’évolution des cardiopathies congénitales et des cardiomyopathies. Pour ce faire, il faudra cependant faire le lien entre les données cliniques et précliniques (d’embryologie et de génétique) et les nouvelles méthodes d’analyse pour quantifier les trabéculations. Chez l’adulte, les cardiologues ont mis au point de nombreuses méthodes de quantification prometteuses à l’aide d’imagerie par échocardiographie, de tomodensitométrie et de résonance magnétique, et les anciennes approches de mesure d’images en coupes transversales ont été revues de manière à permettre une évaluation plus précise. L’adaptation de ces méthodes pour qu’elles puissent être utilisées dans le cadre de la biologie du développement pourrait nous aiguiller sur des façons de mieux mesurer et suivre l’évolution de la morphologie des trabéculations chez des modèles expérimentaux.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sedmera D.
        • Pexieder T.
        • Hu N.
        • Clark E.B.
        Developmental changes in the myocardial architecture of the chick.
        Anat Rec. 1997; 248: 421-432
        • Tian X.
        • Hu T.
        • Zhang H.
        • et al.
        Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries.
        Cell Res. 2013; 23: 1075-1090
        • Samsa L.A.
        • Yang B.
        • Liu J.
        Embryonic cardiac chamber maturation: Trabeculation, conduction, and cardiomyocyte proliferation.
        Am J Med Genet C Semin Med Genet. 2013; 163C: 157-168
        • Iso T.
        • Kedes L.
        • Hamamori Y.
        HES and HERP families: multiple effectors of the Notch signaling pathway.
        J Cell Physiol. 2003; 194: 237-255
        • Kokubo H.
        • Miyagawa-Tomita S.
        • Johnson R.L.
        Hesr, a mediator of the Notch signaling, functions in heart and vessel development.
        Trends Cardiovasc Med. 2005; 15: 190-194
        • Grego-Bessa J.
        • Luna-Zurita L.
        • del Monte G.
        • et al.
        Notch signaling is essential for ventricular chamber development.
        Dev Cell. 2007; 12: 415-429
        • Chen H.
        • Shi S.
        • Acosta L.
        • et al.
        BMP10 is essential for maintaining cardiac growth during murine cardiogenesis.
        Development. 2004; 131: 2219-2231
        • Jones F.E.
        • Golding J.P.
        • Gassmann M.
        ErbB4 signaling during breast and neural development: novel genetic models reveal unique ErbB4 activities.
        Cell Cycle. 2003; 2: 555-559
        • Hertig C.M.
        • Kubalak S.W.
        • Wang Y.
        • Chien K.R.
        Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis.
        J Biol Chem. 1999; 274: 37362-37369
        • Gassmann M.
        • Casagranda F.
        • Orioli D.
        • et al.
        Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor.
        Nature. 1995; 378: 390-394
        • Wang H.U.
        • Chen Z.F.
        • Anderson D.J.
        Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4.
        Cell. 1998; 93: 741-753
        • Catela C.
        • Kratsios P.
        • Hede M.
        • Lang F.
        • Rosenthal N.
        Serum and glucocorticoid-inducible kinase 1 (SGK1) is necessary for vascular remodeling during angiogenesis.
        Dev Dyn. 2010; 239: 2149-2160
        • Kokubo H.
        • Miyagawa-Tomita S.
        • Nakazawa M.
        • Saga Y.
        • Johnson R.L.
        Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system.
        Dev Biol. 2005; 278: 301-309
        • Yang J.
        • Bücker S.
        • Jungblut B.
        • et al.
        Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart.
        Cardiovasc Res. 2012; 96: 276-285
        • McCright B.
        • Lozier J.
        • Gridley T.
        A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency.
        Development. 2002; 129: 1075-1082
        • Luxán G.
        • Casanova J.C.
        • Martínez-Poveda B.
        • et al.
        Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy.
        Nat Med. 2013; 19: 193-201
        • Liu J.
        • Bressan M.
        • Hassel D.
        • et al.
        A dual role for ErbB2 signaling in cardiac trabeculation.
        Development. 2010; 137: 3867-3875
        • Koshiba-Takeuchi K.
        • Mori A.D.
        • Kaynak B.L.
        • et al.
        Reptilian heart development and the molecular basis of cardiac chamber evolution.
        Nature. 2009; 461: 95-98
        • Hagensen M.K.
        • Abe A.S.
        • Falk E.
        • Wang T.
        Physiological importance of the coronary arterial blood supply to the rattlesnake heart.
        J Exp Biol. 2008; 211: 3588-3593
        • Saunders R.
        • Farrell A.
        • Knox D.
        Progression of coronary arterial lesions in Atlantic salmon as a function of growth rate.
        J Fish Aquat Sci. 1992; 49: 878-884
        • Gati S.
        • Chandra N.
        • Bennett R.L.
        • et al.
        Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes?.
        Heart. 2013; 99: 401-408
        • Finsterer J.
        • Stollberger C.
        Definite, probable, or possible left ventricular hypertrabeculation/noncompaction.
        Int J Cardiol. 2008; 123: 175-176
        • Arbustini E.
        • Weidemann F.
        • Hall J.L.
        Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases?.
        J Am Coll Cardiol. 2014; 64: 1840-1850
        • Captur G.
        • Zemrak F.
        • Muthurangu V.
        • et al.
        Fractal analysis of myocardial trabeculations in 2547 subjects: the Multi-Ethnic Study of Atherosclerosis.
        Radiology. 2015; 10: 1-9
        • Captur G.
        • Muthurangu V.
        • Cook C.
        • et al.
        Quantification of left ventricular trabeculae using fractal analysis.
        J Cardiovasc Magn Reson. 2013; 15: 36
        • Zemrak F.
        • Ahlman M.A.
        • Captur G.
        • et al.
        The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up.
        J Am Coll Cardiol. 2014; 64: 1971-1980
        • Freedom R.M.
        • Yoo S.J.
        • Perrin D.
        • et al.
        The morphological spectrum of ventricular noncompaction.
        Cardiol Young. 2005; 15: 345-364
        • Oechslin E.
        • Jenni R.
        Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity?.
        Eur Heart J. 2011; 32: 1446-1456
        • Shou W.
        • Aghdasi B.
        • Armstrong D.L.
        • et al.
        Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12.
        Nature. 1998; 391: 489-492
        • Ashraf H.
        • Pradhan L.
        • Chang E.I.
        • et al.
        A mouse model of human congenital heart disease: high incidence of diverse cardiac anomalies and ventricular noncompaction produced by heterozygous Nkx2-5 homeodomain missense mutation.
        Circ Cardiovasc Genet. 2014; 7: 423-433
        • Phoon C.K.
        • Acehan D.
        • Schlame M.
        • et al.
        Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction.
        J Am Heart Assoc. 2012; 1: 1-13
        • Nakamura T.
        • Colbert M.
        • Krenz M.
        • et al.
        Mediating ERK1 / 2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome.
        J Clin Invest. 2007; 117: 2123-2132
        • Amberger J.S.
        • Bocchini C.A.
        • Schiettecatte F.
        • Scott A.F.
        • Hamosh A.
        OMIM.org: Online Mendelian Inheritance in Man (OMIM), an online catalog of human genes and genetic disorders.
        Nucleic Acids Res. 2015; 43: D789-D798
        • Klaassen S.
        • Probst S.
        • Oechslin E.
        • et al.
        Mutations in sarcomere protein genes in left ventricular noncompaction.
        Circulation. 2008; 117: 2893-2901
        • Ichida F.
        • Tsubata S.
        • Bowles K.R.
        • et al.
        Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome.
        Circulation. 2001; 103: 1256-1263
        • Vatta M.
        • Mohapatra B.
        • Jimenez S.
        • et al.
        Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction.
        J Am Coll Cardiol. 2003; 42: 2014-2027
        • Hermida-Prieto M.
        • Monserrat L.
        • Castro-Beiras A.
        • et al.
        Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations.
        Am J Cardiol. 2004; 94: 50-54
        • Probst S.
        • Oechslin E.
        • Schuler P.
        • et al.
        Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype.
        Circ Cardiovasc Genet. 2011; 4: 367-374
        • Basu R.
        • Hazra S.
        • Shanks M.
        • Paterson D.I.
        • Oudit G.Y.
        Novel mutation in exon 14 of the sarcomere gene MYH7 in familial left ventricular noncompaction with bicuspid aortic valve.
        Circ Heart Fail. 2014; 7: 1059-1062
        • Arndt A.K.
        • Schafer S.
        • Drenckhahn J.D.
        • et al.
        Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy.
        Am J Hum Genet. 2013; 93: 67-77
        • Bleyl S.B.
        • Mumford B.R.
        • Brown-Harrison M.C.
        • et al.
        Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals.
        Am J Med Genet. 1997; 72: 257-265
        • Tang S.
        • Batra A.
        • Zhang Y.
        • Ebenroth E.S.
        • Huang T.
        Left ventricular noncompaction is associated with mutations in the mitochondrial genome.
        Mitochondrion. 2010; 10: 350-357
        • Ware S.M.
        • El-Hassan N.
        • Kahler S.G.
        • et al.
        Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes.
        J Med Genet. 2009; 46: 308-314
        • Finsterer J.
        • Stöllberger C.
        • Schubert B.
        Acquired left ventricular hypertrabeculation/noncompaction in mitochondriopathy.
        Cardiology. 2004; 102: 228-230
        • Milano A.
        • Vermeer A.M.
        • Lodder E.M.
        • et al.
        HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy.
        J Am Coll Cardiol. 2014; 64: 745-756
        • Yang J.
        • Zhu M.
        • Wang Y.
        • et al.
        Whole-exome sequencing identify a new mutation of MYH7 in a Chinese family with left ventricular noncompaction.
        Gene. 2015; 558: 138-142
        • Garcia-Pavia P.
        • de la Pompa J.L.
        Left ventricular noncompaction: a genetic cardiomyopathy looking for diagnostic criteria.
        J Am Coll Cardiol. 2014; 64: 1981-1983
        • Arbustini E.
        • Narula N.
        • Tavazzi L.
        • et al.
        The MOGE(S) classification of cardiomyopathy for clinicians.
        J Am Coll Cardiol. 2014; 64: 304-318
        • Melendez-Ramirez G.
        • Castillo-Castellon F.
        • Espinola-Zavaleta N.
        • Meave A.
        • Kimura-Hayama E.T.
        Left ventricular noncompaction: a proposal of new diagnostic criteria by multidetector computed tomography.
        J Cardiovasc Comput Tomogr. 2012; 6: 346-354
        • Petersen S.E.
        • Selvanayagam J.B.
        • Wiesmann F.
        • et al.
        Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging.
        J Am Coll Cardiol. 2005; 46: 101-105
        • Anderson R.H.
        Ventricular non-compaction–a frequently ignored finding?.
        Eur Heart J. 2008; 29: 10-11
        • Captur G.
        • Flett A.S.
        • Jacoby D.L.
        • Moon J.C.
        Left ventricular non-noncompaction: the mitral valve prolapse of the 21st century?.
        Int J Cardiol. 2013; 164: 3-6
        • Kawel N.
        • Nacif M.
        • Arai A.E.
        • et al.
        Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis.
        Circ Cardiovasc Imaging. 2012; 5: 357-366
        • Jacquier A.
        • Thuny F.
        • Jop B.
        • et al.
        Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction.
        Eur Heart J. 2010; 31: 1098-1104
        • Dawson D.K.
        • Maceira A.M.
        • Raj V.J.
        • et al.
        Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance.
        Circ Cardiovasc Imaging. 2011; 4: 139-146
        • Grothoff M.
        • Pachowsky M.
        • Hoffmann J.
        • et al.
        Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies.
        Eur Radiol. 2012; 22: 2699-2709
        • Stacey R.B.
        • Andersen M.M.
        • St Clair M.
        • Hundley W.G.
        • Thohan V.
        Comparison of systolic and diastolic criteria for isolated LV noncompaction in CMR.
        JACC Cardiovasc Imaging. 2013; 6: 931-940
        • Captur G.
        • Lopes L.R.
        • Patel V.
        • et al.
        Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression.
        Circ Cardiovasc Genet. 2014; 7: 241-248
        • Marchal P.
        • Lairez O.
        • Cognet T.
        • et al.
        Relationship between left ventricular sphericity and trabeculation indexes in patients with dilated cardiomyopathy: a cardiac magnetic resonance study.
        Eur Heart J Cardiovasc Imaging. 2013; 14: 914-920
        • André F.
        • Burger A.
        • Loßnitzer D.
        • et al.
        Reference values for left and right ventricular trabeculation and non-compacted myocardium.
        Int J Cardiol. 2015; 185: 240-247
        • Kawel N.
        • Turkbey E.B.
        • Carr J.J.
        • et al.
        Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: the multi-ethnic study of atherosclerosis.
        Circ Cardiovasc Imaging. 2012; 5: 500-508
        • Chin T.K.
        • Perloff J.K.
        • Williams R.G.
        • Jue K.
        • Mohrmann R.
        Isolated noncompaction of left ventricular myocardium. A study of eight cases.
        Circulation. 1990; 82: 507-513
        • Jenni R.
        • Oechslin E.
        • Schneider J.
        • Jost C.A.
        • Kaufmann P.A.
        Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy.
        Heart. 2001; 86: 666-671
        • Stöllberger C.
        • Finsterer J.
        • Blazek G.
        Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders.
        Am J Cardiol. 2002; 90: 899-902
        • Stöllberger C.
        • Finsterer J.
        Left ventricular hypertrabeculation/noncompaction.
        J Am Soc Echocardiogr. 2004; 17: 91-100
        • Frischknecht B.S.
        • Attenhofer Jost C.H.
        • Oechslin E.N.
        • et al.
        Validation of noncompaction criteria in dilated cardiomyopathy, and valvular and hypertensive heart disease.
        J Am Soc Echocardiogr. 2005; 18: 865-872
        • Sidhu M.
        • Uthamalingam S.
        • Ahmed W.
        • et al.
        Defining left ventricular noncompaction using cardiac computed tomography.
        J Thorac Imaging. 2013; 29: 60-66
        • Goo S.
        • Joshi P.
        • Sands G.
        • et al.
        Trabeculae carneae as models of the ventricular walls: implications for the delivery of oxygen.
        J Gen Physiol. 2009; 134: 339-350
        • Backer D.
        • Cholley B.P.
        • Slama M.
        • Vieillard-Baron A.
        • Vignon P.
        Hemodynamic Monitoring Using Echocardiography in the Critically Ill.
        Springer-Verlag Berlin Heidelberg, Springer Science & Business Media, Berlin2011: 14-16
        • Wong P.C.
        • Miller-Hance W.C.
        Transesophageal Echocardiography for Congenital Heart Disease.
        Springer-Verlag London, Springer Science & Business Media, London2014: 22-40
      1. Petersen SE, Zemrak F. Spot the difference: LV trabeculation vs. LV noncompaction. Cardiology Today, February 2015. Thorofare, NJ: SLACK Incorporated, 2015.

        • Captur G.
        • Lopes L.R.
        • Mohun T.J.
        • et al.
        Prediction of sarcomere mutations in subclinical hypertrophic cardiomyopathy.
        Circ Cardiovasc Imaging. 2014; 7: 863-867
        • Weninger W.J.
        • Geyer S.H.
        Episcopic 3D imaging methods: tools for researching gene function.
        Curr Genomics. 2008; 9: 282-289
        • Odgaard A.
        • Andersen K.
        • Melsen F.
        • Gundersen H.J.
        A direct method for fast three-dimensional serial reconstruction.
        J Microsc. 1990; 159: 335-342
        • Weninger W.J.
        • Meng S.
        • Streicher J.
        • Müller G.B.
        A new episcopic method for rapid 3-D reconstruction: applications in anatomy and embryology.
        Anat Embryol (Berl). 1998; 197: 341-348
        • Weninger W.J.
        • Mohun T.
        Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing.
        Nat Genet. 2002; 30: 59-65
        • Ewald A.J.
        • Mcbride H.
        • Reddington M.
        • Fraser S.E.
        • Kerschmann R.
        Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution.
        Dev Dyn. 2002; 225: 369-375
        • Mohun T.J.
        • Weninger W.J.
        Generation of volume data by episcopic three-dimensional imaging of embryos.
        Cold Spring Harb Protoc. 2012; 2012: 681-682
        • Denk W.
        • Horstmann H.
        Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure.
        PLoS Biol. 2004; 2: e329
        • Weninger W.J.
        • Geyer S.H.
        • Mohun T.J.
        • et al.
        High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology.
        Anat Embryol (Berl). 2006; 211: 213-221
        • Mickoleit M.
        • Schmid B.
        • Weber M.
        • et al.
        High-resolution reconstruction of the beating zebrafish heart.
        Nat Methods. 2014; 11: 1-6
        • Kohli S.K.
        • Pantazis A.
        • Shah J.S.
        • et al.
        Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria?.
        Eur Heart J. 2008; 29: 89-95
        • Stöllberger C.
        • Finsterer J.
        Consider also extracardiac manifestations in left ventricular noncompaction.
        J Am Soc Echocardiogr. 2007; 20: 552
        • Madan S.
        • Mandal S.
        • Bost J.E.
        • et al.
        Noncompaction cardiomyopathy in children with congenital heart disease: evaluation using cardiovascular magnetic resonance imaging.
        Pediatr Cardiol. 2012; 33: 215-221
        • Jiang B.
        • Yang Y.
        • Li F.
        • et al.
        Giant aneurysm of right coronary artery fistula into left ventricle coexisting with noncompaction of left ventricular myocardium.
        Ann Thorac Surg. 2014; 98: e85-e86
        • Hojjati M.R.
        • Rozo J.C.
        • Nazeri A.
        • Cheong B.Y.
        A rare pairing: myocardial noncompaction and congenital absence of pericardium.
        Tex Heart Inst J. 2013; 40: 500-501
        • Erdogan E.
        • Akkaya M.
        • Bacaksiz A.
        • Tasal A.
        • Sevgili E.
        A very rare case of coexistence of ventricular noncompaction cardiomyopathy, myocardial bridging and atherosclerosis.
        Adv Interv Cardiol. 2013; 9: 176-178
        • Yiginer O.
        • Uz O.
        • Kardesoglu E.
        • et al.
        Noncompaction of the myocardium coexistent with vertebral hemangiomas.
        Tex Heart Inst J. 2011; 38: 212-213
        • Finsterer J.
        • Zarrouk-Mahjoub S.
        Consider a mitochondrial disorder when left ventricular hypertrabeculation/noncompaction is associated with renal cysts.
        Tex Heart Inst J. 2014; 41: 677-678
        • Kim K.H.
        • Song B.G.
        • Park M.J.
        • et al.
        Noncompaction of the myocardium coexistent with bronchiectasis and polycystic kidney disease.
        Heart Lung Circ. 2013; 22: 312-314
        • Said S.
        • Cooper C.J.
        • Quevedo K.
        • Rodriguez E.
        • Hernandez G.T.
        Biventricular non-compaction with predominant right ventricular involvement, reduced left ventricular systolic and diastolic function, and pulmonary hypertension in a Hispanic male.
        Am J Case Rep. 2013; 14: 539-542
        • Ivan D.
        • Flamm S.D.
        • Abrams J.
        • et al.
        Isolated ventricular non-compaction in adults with idiopathic cardiomyopathy: cardiac magnetic resonance and pathologic characterization of the anomaly.
        J Heart Lung Transplant. 2005; 24: 781-786
        • Dodd J.D.
        • Holmvang G.
        • Hoffmann U.
        • et al.
        Quantification of left ventricular noncompaction and trabecular delayed hyperenhancement with cardiac MRI: correlation with clinical severity.
        Am J Roentgenol. 2007; 189: 974-980
        • Cho Y.H.
        • Jin S.J.
        • Je H.C.
        • et al.
        A case of noncompaction of the ventricular myocardium combined with situs ambiguous with polysplenia.
        Yonsei Med J. 2007; 48: 1052-1055
        • Dursun M.
        • Agayev A.
        • Nisli K.
        • et al.
        MR imaging features of ventricular noncompaction: emphasis on distribution and pattern of fibrosis.
        Eur J Radiol. 2010; 74: 147-151
        • Akhbour S.
        • Fellat I.
        • Fennich N.
        • et al.
        Electrocardiographic findings in correlation to magnetic resonance imaging patterns in African patients with isolated ventricular noncompaction.
        Anatol J Cardiol. 2015; 15: 550-555
        • Wan J.
        • Zhao S.
        • Cheng H.
        • et al.
        Varied distributions of late gadolinium enhancement found among patients meeting cardiovascular magnetic resonance criteria for isolated left ventricular non-compaction.
        J Cardiovasc Magn Reson. 2013; 15: 20-26
        • Nucifora G.
        • Aquaro G.D.
        • Masci P.G.
        • Pingitore A.
        • Lombardi M.
        Magnetic resonance assessment of prevalence and correlates of right ventricular abnormalities in isolated left ventricular noncompaction.
        Am J Cardiol. 2014; 113: 142-146
        • Nucifora G.
        • Aquaro G.D.
        • Pingitore A.
        • Masci P.G.
        • Lombardi M.
        Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity.
        Eur J Heart Fail. 2011; 13: 170-176
        • Chaowu Y.
        • Li L.
        • Shihua Z.
        Histopathological features of delayed enhancement cardiovascular magnetic resonance in isolated left ventricular noncompaction.
        J Am Coll Cardiol. 2011; 58: 311-312
        • Burke A.
        • Mont E.
        • Kutys R.
        • Virmani R.
        Left ventricular noncompaction: a pathological study of 14 cases.
        Hum Pathol. 2005; 36: 403-411
        • Greutmann M.
        • Mah M.L.
        • Silversides C.K.
        • et al.
        Predictors of adverse outcome in adolescents and adults with isolated left ventricular noncompaction.
        Am J Cardiol. 2012; 109: 276-281
        • Enríquez R.A.
        • Baeza V.R.
        • Gabrielli N.L.
        • Córdova A.S.
        • Castro G.P.
        Non compaction cardiomyopathy: a series of 15 cases [in Spanish].
        Rev Med Chil. 2011; 139: 864-871
        • Stöllberger C.
        • Blazek G.
        • Gessner M.
        • et al.
        Neuromuscular comorbidity, heart failure, and atrial fibrillation as prognostic factors in left ventricular hypertrabeculation/noncompaction.
        Herz. 2015; 40: 906-911
        • Aras D.
        • Tufekcioglu O.
        • Ergun K.
        • et al.
        Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure.
        J Card Fail. 2006; 12: 726-733
        • Lofiego C.
        • Biagini E.
        • Pasquale F.
        • et al.
        Wide spectrum of presentation and variable outcomes of isolated left ventricular non-compaction.
        Heart. 2007; 93: 65-71