Advertisement
Canadian Journal of Cardiology

Exercise and Inherited Arrhythmias

Published:January 14, 2016DOI:https://doi.org/10.1016/j.cjca.2016.01.007

      Abstract

      Sudden cardiac death (SCD) in an apparently healthy individual is a tragedy that prompts a series of investigations to identify the cause of death and to prevent SCD in potentially at-risk family members. Several inherited channelopathies and cardiomyopathies, including long QT syndrome (LQTS), catecholaminergic polymorphic ventricular cardiomyopathy (CPVT), hypertrophic cardiomyopathy (HCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) are associated with exercise-related SCD. Exercise restriction has been a historical mainstay of therapy for these conditions. Syncope and cardiac arrest occur during exercise in LQTS and CPVT because of ventricular arrhythmias, which are managed with β-blockade and exercise restriction. Exercise may provoke hemodynamic or ischemic changes in HCM, leading to ventricular arrhythmias. ARVC is a disease of the desmosome, whose underlying disease process is accelerated by exercise. On this basis, expert consensus has erred on the side of caution, recommending rigorous exercise restriction for all inherited arrhythmias. With time, as familiarity with inherited arrhythmia conditions has increased and patients with milder forms of disease are diagnosed, practitioners have questioned the historical rigorous restrictions advocated for all. This change has been driven by the fact that these are often children and young adults who wish to lead active lives. Recent evidence suggests a lower risk of exercise-related arrhythmias in treated patients than was previously assumed, including those with previous symptoms managed with an implantable cardioverter-defibrillator. In this review, we emphasize shared decision making, monitored medical therapy, individual and team awareness of precautions and emergency response measures, and a more permissive approach to recreational and competitive exercise.

      Résumé

      La mort subite d’origine cardiaque chez une personne apparemment en bonne santé est un événement tragique qui impose de procéder à une série d’évaluations afin d’en déterminer la cause et de la prévenir chez les membres de la famille pouvant être à risque. Plusieurs canalopathies et cardiomyopathies héréditaires, notamment le syndrome du QT long (SQTL), la tachycardie ventriculaire polymorphe catécholaminergique, la cardiomyopathie hypertrophique (CMH) et la cardiomyopathie arythmogène du ventricule droit, sont associées à la mort subite d’origine cardiaque liée à l’exercice. Jusqu’ici, la restriction de l’exercice a toujours constitué la pierre angulaire de la prise en charge de ces affections. En présence de SQTL congénital ou de tachycardie ventriculaire polymorphe catécholaminergique, une syncope et un arrêt cardiaque peuvent survenir durant l’exercice à cause d’arythmies ventriculaires, qui sont prises en charge par l’administration d’un bêtabloquant et la restriction de l’exercice. En présence d’une CMH, l’exercice peut entraîner des modifications hémodynamiques ou ischémiques et ainsi provoquer des arythmies ventriculaires. La cardiomyopathie arythmogène du ventricule droit est une maladie du desmosome dont le processus morbide sous-jacent est accéléré par l’exercice. Par conséquent, les experts s’entendent couramment pour dire que la prudence est de rigueur et recommandent une restriction stricte de l’exercice pour tous les types d’arythmies héréditaires. Or, avec le temps, une meilleure connaissance des arythmies héréditaires et le diagnostic de formes plus légères de la maladie ont fait en sorte que les praticiens remettent maintenant en question la recommandation de strictes restrictions dans tous les cas. Ce changement est motivé par le fait que les patients sont souvent des enfants ou de jeunes adultes qui désirent mener une vie active. De récentes données probantes semblent indiquer une diminution du risque d’arythmie liée à l’exercice plus importante que celle présumée antérieurement chez les patients traités, notamment ceux ayant déjà présenté des symptômes maîtrisés par un défibrillateur cardioverteur implantable. Dans le présent article, nous mettons l’accent sur la prise de décision partagée, la surveillance du traitement médical, la sensibilisation du patient et de l’équipe aux précautions et aux mesures à prendre en cas d’urgence, et l’adoption d’une approche plus permissive à l’égard de l’exercice tant en contexte récréatif que compétitif.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krahn A.D.
        • Healey J.S.
        • Chauhan V.
        • et al.
        Systematic assessment of patients with unexplained cardiac arrest: Cardiac Arrest Survivors With Preserved Ejection Fraction Registry (CASPER).
        Circulation. 2009; 120: 278-285
        • Behr E.
        • Wood D.A.
        • Wright M.
        • et al.
        Cardiological assessment of first-degree relatives in sudden arrhythmic death syndrome.
        Lancet. 2003; 362: 1457-1459
        • Tan H.L.
        • Hofman N.
        • van Langen I.M.
        • van der Wal A.C.
        • Wilde A.A.
        Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives.
        Circulation. 2005; 112: 207-213
        • McGorrian C.
        • Constant O.
        • Harper N.
        • et al.
        Family-based cardiac screening in relatives of victims of sudden arrhythmic death syndrome.
        Europace. 2013; 15: 1050-1058
        • Mellor G.
        • Raju H.
        • de Noronha S.V.
        • et al.
        Clinical characteristics and circumstances of death in the sudden arrhythmic death syndrome.
        Circ Arrhythm Electrophysiol. 2014; 7: 1078-1083
        • Priori S.G.
        • Blomstrom-Lundqvist C.
        • Mazzanti A.
        • et al.
        2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC).
        Eur Heart J. 2015; 36: 2793-2867
        • Masrur S.
        • Memon S.
        • Thompson P.D.
        Brugada syndrome, exercise, and exercise testing.
        Clin Cardiol. 2015; 38: 323-326
        • Schimpf R.
        • Veltmann C.
        • Wolpert C.
        • Borggrefe M.
        Channelopathies: Brugada syndrome, long QT syndrome, short QT syndrome, and CPVT.
        Herz. 2009; 34: 281-288
        • Wu J.
        • Naiki N.
        • Ding W.G.
        • et al.
        A molecular mechanism for adrenergic-induced long QT syndrome.
        J Am Coll Cardiol. 2014; 63: 819-827
        • Schwartz P.J.
        • Priori S.G.
        • Spazzolini C.
        • et al.
        Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias.
        Circulation. 2001; 103: 89-95
        • Shimizu W.
        • Horie M.
        • Ohno S.
        • et al.
        Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan.
        J Am Coll Cardiol. 2004; 44: 117-125
        • Zipes D.P.
        • Ackerman M.J.
        • Estes 3rd, N.A.
        • Grant A.O.
        • Myerburg R.J.
        • Van Hare G.
        Task Force 7: arrhythmias.
        J Am Coll Cardiol. 2005; 45: 1354-1363
        • Johnson J.N.
        • Ackerman M.J.
        Return to play? Athletes with congenital long QT syndrome.
        Br J Sports Med. 2013; 47: 28-33
        • Kim J.A.
        • Lopes C.M.
        • Moss A.J.
        • et al.
        Trigger-specific risk factors and response to therapy in long QT syndrome type 2.
        Heart Rhythm. 2010; 7: 1797-1805
        • Goldenberg I.
        • Thottathil P.
        • Lopes C.M.
        • et al.
        Trigger-specific ion-channel mechanisms, risk factors, and response to therapy in type 1 long QT syndrome.
        Heart Rhythm. 2012; 9: 49-56
        • Ackerman M.J.
        • Zipes D.P.
        • Kovacs R.J.
        • et al.
        Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 10: the cardiac channelopathies: a scientific statement from the American Heart Association and American College of Cardiology.
        Circulation. 2015; 132: e326-e329
        • Kazemian P.
        • Gollob M.H.
        • Pantano A.
        • Oudit G.Y.
        A novel mutation in the RYR2 gene leading to catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation: dose-dependent arrhythmia-event suppression by beta-blocker therapy.
        Can J Cardiol. 2011; 27: 870.e7-870.e10
        • Napolitano C.
        • Priori S.G.
        • Bloise R.
        Catecholaminergic polymorphic ventricular tachycardia.
        in: Pagon R.A. Adam M.P. Ardinger H.H. GeneReviews(R). University of Washington, Seattle1993
        • Sumitomo N.
        • Harada K.
        • Nagashima M.
        • et al.
        Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death.
        Heart. 2003; 89: 66-70
        • Sy R.W.
        • Gollob M.H.
        • Klein G.J.
        • et al.
        Arrhythmia characterization and long-term outcomes in catecholaminergic polymorphic ventricular tachycardia.
        Heart Rhythm. 2011; 8: 864-871
        • van der Werf C.
        • Zwinderman A.H.
        • Wilde A.A.
        Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments.
        Europace. 2012; 14: 175-183
        • Watanabe H.
        • van der Werf C.
        • Roses-Noguer F.
        • et al.
        Effects of flecainide on exercise-induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia.
        Heart Rhythm. 2013; 10: 542-547
        • Khoury A.
        • Marai I.
        • Suleiman M.
        • et al.
        Flecainide therapy suppresses exercise-induced ventricular arrhythmias in patients with CASQ2-associated catecholaminergic polymorphic ventricular tachycardia.
        Heart Rhythm. 2013; 10: 1671-1675
        • De Ferrari G.M.
        • Dusi V.
        • Spazzolini C.
        • et al.
        Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation.
        Circulation. 2015; 131: 2185-2193
        • Kurtzwald-Josefson E.
        • Hochhauser E.
        • Katz G.
        • et al.
        Exercise training improves cardiac function and attenuates arrhythmia in CPVT mice.
        J Appl Physiol. 2012; 113: 1677-1683
        • Gray B.
        • Semsarian C.
        • Sy R.W.
        Brugada syndrome: a heterogeneous disease with a common ECG phenotype?.
        J Cardiovasc Electrophysiol. 2014; 25: 450-456
        • Amin A.S.
        • de Groot E.A.
        • Ruijter J.M.
        • Wilde A.A.
        • Tan H.L.
        Exercise-induced ECG changes in Brugada syndrome.
        Circ Arrhythm Electrophysiol. 2009; 2: 531-539
        • Makimoto H.
        • Nakagawa E.
        • Takaki H.
        • et al.
        Augmented ST-segment elevation during recovery from exercise predicts cardiac events in patients with Brugada syndrome.
        J Am Coll Cardiol. 2010; 56: 1576-1584
      1. Stroker E, de Asmundis C, Chierchia GB, Brugada P. Exercise-related Brugada pattern and monomorphic ventricular tachycardia in a patient with Brugada syndrome: interplay between body temperature, haemodynamics and vagal activity [e-pub ahead of print]. Eur Heart J http://dx.doi.org/10.1093/eurheartj/ehv263, accessed November 30, 2015.

        • Haissaguerre M.
        • Derval N.
        • Sacher F.
        • et al.
        Sudden cardiac arrest associated with early repolarization.
        N Engl J Med. 2008; 358: 2016-2023
        • Noseworthy P.A.
        • Weiner R.
        • Kim J.
        • et al.
        Early repolarization pattern in competitive athletes: clinical correlates and the effects of exercise training.
        Circ Arrhythm Electrophysiol. 2011; 4: 432-440
        • Tikkanen J.T.
        • Junttila M.J.
        • Anttonen O.
        • et al.
        Early repolarization: electrocardiographic phenotypes associated with favorable long-term outcome.
        Circulation. 2011; 123: 2666-2673
        • Maron B.J.
        • Doerer J.J.
        • Haas T.S.
        • Tierney D.M.
        • Mueller F.O.
        Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006.
        Circulation. 2009; 119: 1085-1092
        • Maron B.J.
        • Olivotto I.
        • Spirito P.
        • et al.
        Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population.
        Circulation. 2000; 102: 858-864
        • Maron B.J.
        • Chaitman B.R.
        • Ackerman M.J.
        • et al.
        Recommendations for physical activity and recreational sports participation for young patients with genetic cardiovascular diseases.
        Circulation. 2004; 109: 2807-2816
        • Maron B.J.
        • Udelson J.E.
        • Bonow R.O.
        • et al.
        Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement From the American Heart Association and American College of Cardiology.
        J Am Coll Cardiol. 2015; 66: 2362-2371
        • Gimeno J.R.
        • Tome-Esteban M.
        • Lofiego C.
        • et al.
        Exercise-induced ventricular arrhythmias and risk of sudden cardiac death in patients with hypertrophic cardiomyopathy.
        Eur Heart J. 2009; 30: 2599-2605
        • Kirchhof P.
        • Fabritz L.
        • Zwiener M.
        • et al.
        Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice.
        Circulation. 2006; 114: 1799-1806
        • James C.A.
        • Bhonsale A.
        • Tichnell C.
        • et al.
        Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers.
        J Am Coll Cardiol. 2013; 62: 1290-1297
        • Ruwald A.C.
        • Marcus F.
        • Estes 3rd, N.A.
        • et al.
        Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy.
        Eur Heart J. 2015; 36: 1735-1743
        • Furlanello F.
        • Bertoldi A.
        • Dallago M.
        • et al.
        Cardiac arrest and sudden death in competitive athletes with arrhythmogenic right ventricular dysplasia.
        Pacing Clin Electrophysiol. 1998; 21: 331-335
        • Finocchiaro G.
        • Sharma S.
        The safety of exercise in individuals with cardiomyopathy.
        Can J Cardiol. 2016; 32: 467-474
        • Ingles J.
        • Lind J.M.
        • Phongsavan P.
        • Semsarian C.
        Psychosocial impact of specialized cardiac genetic clinics for hypertrophic cardiomyopathy.
        Genet Med. 2008; 10: 117-120
        • Blom M.T.
        • Beesems S.G.
        • Homma P.C.
        • et al.
        Improved survival after out-of-hospital cardiac arrest and use of automated external defibrillators.
        Circulation. 2014; 130: 1868-1875
        • Antzelevitch C.
        • Shimizu W.
        Cellular mechanisms underlying the long QT syndrome.
        Curr Opin Cardiol. 2002; 17: 43-51
        • Melacini P.
        • Maron B.J.
        • Bobbo F.
        • et al.
        Evidence that pharmacological strategies lack efficacy for the prevention of sudden death in hypertrophic cardiomyopathy.
        Heart. 2007; 93: 708-710
        • Marcus G.M.
        • Glidden D.V.
        • Polonsky B.
        • et al.
        Efficacy of antiarrhythmic drugs in arrhythmogenic right ventricular cardiomyopathy: a report from the North American ARVC Registry.
        J Am Coll Cardiol. 2009; 54: 609-615
        • Wilde A.A.
        • Bhuiyan Z.A.
        • Crotti L.
        • et al.
        Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia.
        N Engl J Med. 2008; 358: 2024-2029
        • Priori S.G.
        • Napolitano C.
        • Schwartz P.J.
        • et al.
        The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge.
        Circulation. 2000; 102: 945-947
        • Kanters J.K.
        • Yuan L.
        • Hedley P.L.
        • et al.
        Flecainide provocation reveals concealed brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A.
        Circ J. 2014; 78: 1136-1143
        • Padfield G.J.
        • AlAhmari L.
        • Lieve K.V.
        • et al.
        Flecainide monotherapy is an option for selected patients with catecholaminergic polymorphic ventricular tachycardia intolerant of β-blockade.
        Heart Rhythm. 2016; 13: 609-613
        • Viskin S.
        • Postema P.G.
        • Bhuiyan Z.A.
        • et al.
        The response of the QT interval to the brief tachycardia provoked by standing: a bedside test for diagnosing long QT syndrome.
        J Am Coll Cardiol. 2010; 55: 1955-1961
        • Walker B.D.
        • Krahn A.D.
        • Klein G.J.
        • et al.
        Effect of change in posture and exercise on repolarization in patients with long QT syndrome with HERG channel mutations.
        Can J Cardiol. 2005; 21: 33-38
        • Krahn A.D.
        • Yee R.
        • Chauhan V.
        • et al.
        Beta blockers normalize QT hysteresis in long QT syndrome.
        Am Heart J. 2002; 143: 528-534
        • Bennett M.T.
        • Gula L.J.
        • Klein G.J.
        • et al.
        Effect of beta-blockers on QT dynamics in the long QT syndrome: measuring the benefit.
        Europace. 2014; 16: 1847-1851
        • Sy R.W.
        • van der Werf C.
        • Chattha I.S.
        • et al.
        Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands.
        Circulation. 2011; 124: 2187-2194
        • Christian S.
        • Somerville M.
        • Taylor S.
        • Atallah J.
        Exercise and beta-blocker therapy recommendations for inherited arrhythmogenic conditions.
        Cardiol Young. 2015; : 1-7
        • Chockalingam P.
        • Crotti L.
        • Girardengo G.
        • et al.
        Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2: higher recurrence of events under metoprolol.
        J Am Coll Cardiol. 2012; 60: 2092-2099
        • Abu-Zeitone A.
        • Peterson D.R.
        • Polonsky B.
        • McNitt S.
        • Moss A.J.
        Efficacy of different beta-blockers in the treatment of long QT syndrome.
        J Am Coll Cardiol. 2014; 64: 1352-1358
        • Gersh B.J.
        • Maron B.J.
        • Bonow R.O.
        • et al.
        2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
        Circulation. 2011; 124: e783-e831
        • O'Mahony C.
        • Jichi F.
        • Pavlou M.
        • et al.
        A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD).
        Eur Heart J. 2014; 35: 2010-2020
        • Marcus F.I.
        • Zareba W.
        • Calkins H.
        • et al.
        Arrhythmogenic right ventricular cardiomyopathy/dysplasia clinical presentation and diagnostic evaluation: results from the North American Multidisciplinary Study.
        Heart Rhythm. 2009; 6: 984-992
        • Groeneweg J.A.
        • Bhonsale A.
        • James C.A.
        • et al.
        Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members.
        Circulation Cardiovasc Genet. 2015; 8: 437-446
        • Lampert R.
        • Olshansky B.
        • Heidbuchel H.
        • et al.
        Safety of sports for athletes with implantable cardioverter-defibrillators: results of a prospective, multinational registry.
        Circulation. 2013; 127: 2021-2030
        • Zipes D.P.
        • Link M.S.
        • Ackerman M.J.
        • et al.
        Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 9: arrhythmias and conduction defects: a scientific statement From the American Heart Association and American College of Cardiology.
        J Am Coll Cardiol. 2015; 66: 2412-2423
        • Link M.S.
        • Laidlaw D.
        • Polonsky B.
        • et al.
        Ventricular arrhythmias in the North American multidisciplinary study of ARVC: predictors, characteristics, and treatment.
        J Am Coll Cardiol. 2014; 64: 119-125