Advertisement
Canadian Journal of Cardiology

Higher Plasma Concentrations of Platelet Microparticles in Patients With Acute Coronary Syndrome: A Systematic Review and Meta-analysis

  • Author Footnotes
    ∗ These authors contributed equally to this work.
    Cheng Sun
    Footnotes
    ∗ These authors contributed equally to this work.
    Affiliations
    Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
    Search for articles by this author
  • Author Footnotes
    ∗ These authors contributed equally to this work.
    Wei-Bo Zhao
    Footnotes
    ∗ These authors contributed equally to this work.
    Affiliations
    Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
    Search for articles by this author
  • Yan Chen
    Affiliations
    Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
    Search for articles by this author
  • Hou-Yuan Hu
    Correspondence
    Corresponding author: Prof Hou-Yuan Hu, Department of Cardiology, Southwest Hospital, Third Military Medical University, 29 Gaotanyan St, Shapingba District, Chongqing 400038, China. Tel.: +86-23-68765167; fax: +86-23-65317511.
    Affiliations
    Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
    Search for articles by this author
  • Author Footnotes
    ∗ These authors contributed equally to this work.
Published:February 18, 2016DOI:https://doi.org/10.1016/j.cjca.2016.02.052

      Abstract

      Background

      Platelet microparticles (PMP), shedding on platelet activation, have been proposed as key components in the procoagulant and proinflammatory process. The aim of this study was to clarify the correlation between plasma PMP concentration and the presence of acute coronary syndrome (ACS).

      Methods

      We searched for potential relevant studies in PubMed, EMBASE, the Cochrane Library, and Web of Science databases before December 2015. After screening for eligibility, 11 observational studies that tested the plasma concentration of PMP in patients with ACS were retrieved for comprehensive review, quality assessment, and data extraction.

      Results

      Seven studies (64%) provided explicit information between healthy controls and patients with ACS. Five studies (45%) addressed the plasma levels of PMP between patients with ACS and patients with stable angina. Moreover, 5 studies (45%) compared changes in PMP concentration before and after percutaneous coronary intervention (PCI) in patients with ACS. The results showed a significant difference in plasma PMP levels between the patients with ACS and healthy controls, with the pooled standardized mean difference of 1.95 (95% confidence intervals, 0.87-3.02; P < 0.0001). And the plasma concentration of PMP in patients with ACS was higher before PCI than after PCI (standardized mean difference, −0.97; 95% confidence interval, −1.91 to −0.03; P = 0.043). Four of the five studies described that patients with ACS had higher plasma PMP concentration than patients with stable angina, but there was no significant difference between these 2 patient cohorts.

      Conclusions

      PMP is a promising biomarker for the development of ACS. Moreover, PCI, the most common treatment for ACS, could effectively decrease the plasma concentration of PMP, indicating PMP as a prognostic factor.

      Résumé

      Introduction

      Les microparticules plaquettaires (MPP) libérées au cours de l’activation plaquettaire ont été proposées comme des composantes essentielles des processus procoagulants et pro-inflammatoires. L’objectif de la présente étude était de clarifier la corrélation entre la concentration plasmatique de MPP et la présence d’un syndrome coronarien aigu (SCA).

      Méthodes

      Nous avons recherché des études pertinentes potentielles dans les banques de données PubMed, EMBASE, Bibliothèque Cochrane et Web of Science avant décembre 2015. Après avoir déterminé l’admissibilité, nous avons mis en évidence 11 études observationnelles qui évaluaient la concentration plasmatique de MPP chez les patients atteints d’un SCA pour procéder à une revue exhaustive, à l’évaluation de la qualité et à l’extraction des données.

      Résultats

      Sept études (64 %) donnaient des informations explicites entre les témoins sains et les patients atteints d’un SCA. Cinq études (45 %) portaient sur les concentrations plasmatiques de MPP entre les patients atteints d’un SCA et les patients atteints d’angine stable. De plus, 5 études (45 %) comparaient les changements dans la concentration de MPP avant et après l’intervention coronarienne percutanée (ICP) chez les patients atteints d’un SCA. Les résultats montraient une différence significative dans les concentrations plasmatiques de MPP entre les patients atteints d’un SCA et les témoins sains, soit une différence moyenne standardisée pondérée de 1,95 (intervalles de confiance à 95 %, 0,87-3,02; P < 0,0001). Aussi la concentration plasmatique de MPP chez les patients atteints d’un SCA était plus élevée avant l’ICP qu’après l’ICP (différence moyenne standardisée, −0,97; intervalle de confiance à 95 %, −1,91 à −0,03; P = 0,043). Quatre des cinq études montraient que les patients atteints d’un SCA avaient une concentration plasmatique plus élevée de MPP que les patients atteints d’angine stable, mais ne montraient aucune différence significative entre ces 2 cohortes de patients.

      Conclusions

      Les MPP sont des biomarqueurs prometteurs du développement de SCA. De plus, l’ICP, le traitement le plus fréquent des SCA, pourrait effectivement diminuer la concentration plasmatique de MPP, ce qui indique que les MPP constituent un facteur pronostique.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Smith J.N.
        • Negrelli J.M.
        • Manek M.B.
        • Hawes E.M.
        • Viera A.J.
        Diagnosis and management of acute coronary syndrome: an evidence-based update.
        J Am Board Fam Med. 2015; 28: 283-293
        • Lozano R.
        • Naghavi M.
        • Foreman K.
        • et al.
        Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.
        Lancet. 2012; 380: 2095-2128
        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • et al.
        Heart disease and stroke statistics-2013 update: a report from the American Heart Association.
        Circulation. 2013; 127: e6-e245
        • Thygesen K.
        • Alpert J.S.
        • Jaffe A.S.
        • et al.
        Third universal definition of myocardial infarction.
        Glob Heart. 2012; 7: 275-295
        • Berezin A.
        • Zulli A.
        • Kerrigan S.
        • Petrovic D.
        • Kruzliak P.
        Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases.
        Clin Biochem. 2015; 48: 562-568
        • Williams M.S.
        • Rogers H.L.
        • Wang N.Y.
        • Ziegelstein R.C.
        Do platelet-derived microparticles play a role in depression, inflammation, and acute coronary syndrome?.
        Psychosomatics. 2014; 55: 252-260
        • Rautou P.E.
        • Vion A.C.
        • Amabile N.
        • et al.
        Microparticles, vascular function, and atherothrombosis.
        Circ Res. 2011; 109: 593-606
        • Ayers L.
        • Kohler M.
        • Harrison P.
        • et al.
        Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay.
        Thromb Res. 2011; 127: 370-377
        • Burnier L.
        • Fontana P.
        • Kwak B.R.
        • Angelillo-Scherrer A.
        Cell-derived microparticles in haemostasis and vascular medicine.
        Thromb Haemost. 2009; 101: 439-451
        • Nomura S.
        • Ozaki Y.
        • Ikeda Y.
        Function and role of microparticles in various clinical settings.
        Thromb Res. 2008; 123: 8-23
        • Habib A.
        • Kunzelmann C.
        • Shamseddeen W.
        • et al.
        Elevated levels of circulating procoagulant microparticles in patients with beta-thalassemia intermedia.
        Haematologica. 2008; 93: 941-942
        • Sabatier F.
        • Roux V.
        • Anfosso F.
        • et al.
        Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity.
        Blood. 2002; 99: 3962-3970
        • Combes V.
        • Simon A.C.
        • Grau G.E.
        • et al.
        In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant.
        J Clin Invest. 1999; 104: 93-102
        • Mesri M.
        • Altieri D.C.
        Endothelial cell activation by leukocyte microparticles.
        J Immunol. 1998; 161: 4382-4387
        • Freyssinet J.M.
        Cellular microparticles: what are they bad or good for?.
        J Thromb Haemost. 2003; 1: 1655-1662
        • Diehl P.
        • Fricke A.
        • Sander L.
        • et al.
        Microparticles: major transport vehicles for distinct microRNAs in circulation.
        Cardiovasc Res. 2012; 93: 633-644
        • Burnouf T.
        • Goubran H.A.
        • Chou M.-L.
        • Devos D.
        • Radosevic M.
        Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine.
        Blood Rev. 2014; 28: 155-166
        • Lynch S.F.
        • Ludlam C.A.
        Plasma microparticles and vascular disorders.
        Br J Haematol. 2007; 137: 36-48
        • Sinauridze E.I.
        • Kireev D.A.
        • Popenko N.Y.
        • et al.
        Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets.
        Thromb Haemost. 2007; 97: 425-434
        • Burger P.C.
        • Wagner D.D.
        Platelet P-selectin facilitates atherosclerotic lesion development.
        Blood. 2003; 101: 2661-2666
        • Cha J.J.
        • Kim J.Y.
        • Choi E.Y.
        • et al.
        Effect of abciximab on the levels of circulating microparticles in patients with acute myocardial infarction treated by primary angioplasty.
        Korean Circ J. 2013; 43: 600-606
        • Biasucci L.M.
        • Porto I.
        • Di Vito L.
        • et al.
        Differences in microparticle release in patients with acute coronary syndrome and stable angina.
        Circ J. 2012; 76: 2174-2182
        • Empana J.P.
        • Boulanger C.M.
        • Tafflet M.
        • et al.
        Microparticles and sudden cardiac death due to coronary occlusion. The TIDE (Thrombus and Inflammation in sudden DEath) study.
        Eur Heart J Acute Cardiovasc Care. 2015; 4: 28-36
        • Keuren J.F.
        • Jie K.S.
        • Leers M.P.
        Increased expression of TF on monocytes, but decreased numbers of TF bearing microparticles in blood from patients with acute myocardial infarction.
        Eur J Haematol. 2009; 83: 387-388
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6: e1000097
        • Stang A.
        Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses.
        Eur J Epidemiol. 2010; 25: 603-605
        • Higgins J.
        • Green S.
        Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0.
        ([updated March 2011])2011 (Avalible at:)
        • Jackson D.
        • White I.R.
        • Riley R.D.
        Quantifying the impact of between-study heterogeneity in multivariate meta-analyses.
        Stat Med. 2012; 31: 3805-3820
        • Peters J.L.
        • Sutton A.J.
        • Jones D.R.
        • Abrams K.R.
        • Rushton L.
        Comparison of two methods to detect publication bias in meta-analysis.
        JAMA. 2006; 295: 676-680
        • Zintzaras E.
        • Ioannidis J.P.
        HEGESMA: genome search meta-analysis and heterogeneity testing.
        Bioinformatics. 2005; 21: 3672-3673
        • Begg C.B.
        • Mazumdar M.
        Operating characteristics of a rank correlation test for publication bias.
        Biometrics. 1994; 50: 1088-1101
        • Giannopoulos G.
        • Oudatzis G.
        • Paterakis G.
        • et al.
        Red blood cell and platelet microparticles in myocardial infarction patients treated with primary angioplasty.
        Int J Cardiol. 2014; 176: 145-150
        • Cui Y.
        • Zheng L.H.
        • Jiang M.
        • et al.
        Circulating microparticles in patients with coronary heart disease and its correlation with interleukin-6 and C-reactive protein.
        Mol Biol Rep. 2013; 40: 6437-6442
        • Fang L.
        • Zheng J.
        The changes of platelet and platelet activation markers in acute coronary syndrome patients.
        Clin Lab. 2013; 59: 1339-1342
        • Matsumoto N.
        • Nomura S.
        • Kamihata H.
        • Kimura Y.
        • Iwasaka T.
        Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome.
        Thromb Haemost. 2004; 91: 146-154
        • Matsumoto N.
        • Nomura S.
        • Kamihata H.
        • Kimura Y.
        • Iwasaka T.
        Association of platelet-derived microparticles with C-C chemokines on vascular complication in patients with acute myocardial infarction.
        Clin Appl Thromb Hemost. 2002; 8: 279-286
        • Min P.K.
        • Kim J.Y.
        • Chung K.H.
        • et al.
        Local increase in microparticles from the aspirate of culprit coronary arteries in patients with ST-segment elevation myocardial infarction.
        Atherosclerosis. 2013; 227: 323-328
        • Morel O.
        • Hugel B.
        • Jesel L.
        • et al.
        Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists.
        J Thromb Haemost. 2004; 2: 1118-1126
        • Mallat Z.
        • Benamer H.
        • Hugel B.
        • et al.
        Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes.
        Circulation. 2000; 101: 841-843
        • Wong B.W.
        • Meredith A.
        • Lin D.
        • McManus B.M.
        The biological role of inflammation in atherosclerosis.
        Can J Cardiol. 2012; 28: 631-641
        • Libby P.
        • Ridker P.M.
        • Maseri A.
        Inflammation and atherosclerosis.
        Circulation. 2002; 105: 1135-1143
        • Navab M.
        • Berliner J.A.
        • Watson A.D.
        • et al.
        The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture.
        Arterioscler Thromb Vasc Biol. 1996; 16: 831-842
        • Habersberger J.
        • Strang F.
        • Scheichl A.
        • et al.
        Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction.
        Cardiovasc Res. 2012; 96: 64-72
        • Pamukcu B.
        • Lip G.Y.
        • Snezhitskiy V.
        • Shantsila E.
        The CD40-CD40L system in cardiovascular disease.
        Ann Med. 2011; 43: 331-340
        • Popovic M.
        • Smiljanic K.
        • Dobutovic B.
        • et al.
        Thrombin and vascular inflammation.
        Mol Cell Biochem. 2012; 359: 301-313
        • Flaumenhaft R.
        • Mairuhu A.T.
        • Italiano J.E.
        Platelet- and megakaryocyte-derived microparticles.
        Semin Thromb Hemost. 2010; 36: 881-887
        • Flaumenhaft R.
        Formation and fate of platelet microparticles.
        Blood Cells Mol Dis. 2006; 36: 182-187
        • Tan K.T.
        • Lip G.Y.
        Platelets, atherosclerosis and the endothelium: new therapeutic targets?.
        Expert Opin Investig Drugs. 2003; 12: 1765-1776
        • Salonen E.M.
        • Vaheri A.
        • Pollanen J.
        • et al.
        Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin.
        J Biol Chem. 1989; 264: 6339-6343
        • Tan K.T.
        • Lip G.Y.
        The potential role of platelet microparticles in atherosclerosis.
        Thromb Haemost. 2005; 94: 488-492