ABSTRACT
We present the inaugural evidence-based Canadian recommendations for the measurement of blood pressure in children and the diagnosis and evaluation of pediatric hypertension. Rates of pediatric hypertension are increasing concomitant with increased rates of childhood obesity. With this, there is growing awareness of the need to measure blood pressure in children. Consequently, the present recommendations have been developed to address an important gap and improve the clinical care of children. For 2016, a total of 15 recommendations are presented. These are categorized in a fashion similar to that of the existing adult recommendations. Specifically, we present reviewed to identify additional studies. Content and methodology experts reviewed and appraised included articles using standardized grading criteria. The recommendations were graded based on the strength of the supporting evidence and were discussed at a consensus conference in Toronto, Ontario, Canada on October 22, 2015. The new recommendations were voted on by the 75 members of Hypertension Canada’s Canadian Hypertension Education Program (CHEP) Guidelines Task Force. Recommendations that received at least 70% task force approval were accepted as final.

Recommendations

Accurate measurement of BP in children

There are 3 recommendations for BP measurement in children: (1) BP should be measured regularly in children 3 years of age and older by a health care professional using
recommendations on (1) accurate measurement of blood pressure in children, (2) criteria for diagnosis of hypertension in children, (3) assessment of overall cardiovascular risk in hypertensive children, (4) routine laboratory tests for the investigation of children with hypertension, (5) ambulatory blood pressure measurement in children, and (6) the role of echocardiography. We discuss the rationale for the recommendations and present additional supporting material for the clinician, including tables with standardized techniques for blood pressure measurement and determination of normative blood pressure values for children. Hypertension Canada’s Canadian Hypertension Education Program Guidelines Task Force will update the recommendations annually and develop future evidence-based recommendations to guide prevention and treatment of pediatric hypertension.

standardized pediatric techniques, as presented in Table 1; (2) BP may be measured with a mercury sphygmomanometer, aneroid sphygmomanometer, or oscillometric device (abnormal oscillometric values should be confirmed by auscultation); (3) BP varies with age, sex, and height in children and, therefore, BP values should be compared with norms for age, sex, and height.

Criteria for diagnosis of hypertension in children

There are 3 recommendations for the diagnosis of hypertension in children: (1) using office BP measurements, children can be diagnosed as hypertensive if systolic BP (SBP) or diastolic BP (DBP) is \(\geq \) the 95th percentile for age, sex, and height on at least 3 separate occasions. (2) If the BP is \(\geq \) the 95th percentile, BP should be staged. Stage 1 is defined by BP between the 95th and 99th percentiles plus 5 mm Hg. Stage 2 is defined by BP >99th percentile plus 5 mm Hg. If BP is stage 1, BP measurements should be repeated on 2 more occasions within 1 month; if hypertension is confirmed, evaluation or appropriate referral (or both) should be initiated within 1 month. If BP is stage 2, prompt referral should be made for evaluation and therapy. (3) All children with suspected or confirmed hypertension should undergo a hypertension-focused history and physical evaluation.

Assessment of overall cardiovascular risk in hypertensive children

We recommend that cardiovascular risk factors be assessed in hypertensive children.

Routine laboratory tests for the investigation of children with hypertension

Three recommendations are listed in this section: (1) routine tests that should be performed for all children with hypertension include (a) blood chemistry panels (sodium, potassium, chloride, total CO\(_2\), and creatinine), (b) urinalysis, and (c) renal ultrasonography; (2) routine laboratory tests that should be performed for the assessment of cardiovascular risk in all children with hypertension include (a) fasting blood glucose, (b) serum total cholesterol and high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides; (3) routine tests that should be performed for the assessment of target organ damage in all children with hypertension include (a) echocardiography, (b) retinal examination, (c) albumin-to-creatinine ratio (first-morning measurement).

Ambulatory BP measurement in children

There are 3 recommendations pertaining to ambulatory BP measurement (ABPM): (1) For children with elevated office BP readings, ABPM should be guided by a physician with expertise in pediatric hypertension. (2) Physicians should use only ABPM devices that have been validated independently in children using established protocols. A standard approach to obtaining ABPM readings should be used. (3) ABPM levels should be interpreted with appropriate pediatric normative data for children \(\geq \)5 years of age or height \(\geq \)120 cm.

Table 1. Standard approach for BP measurement in children (Grade D)

| 1. Children who will undergo BP measurement should avoid stimulating medications before evaluation. At the time of evaluation, the child should be seated in a quiet room for 5 minutes with back supported before the measurement of BP. |
| 2. The right arm is the preferred location for BP measurement for comparison with normative data, because of the possibility of coartation of the aorta, which may result in an erroneously low BP measurement being obtained in the left arm. |
| 3. A cuff size with a bladder width that is at least 40% of the arm circumference should be used, and the cuff bladder length should cover 80%-100% of the circumference of the arm. The arm should be bare and supported with the BP cuff at heart level. To obtain accurate measurements in children, a range of pediatric and adult cuff sizes should be available. |
| 4. The pressure should be increased rapidly to 30 mm Hg above the level at which the radial pulse is extinguished. |
| 5. The stethoscope should be placed below the bottom edge of the cuff and above the antecubital fossa. The bell or diaphragm of the stethoscope should be held gently and steadily over the brachial artery. |
| 6. The control valve should be opened so that the rate of deflation of the cuff is approximately 2 mm Hg per heart beat. |
| 7. The systolic level—the first appearance of a clear tapping sound (phase I Korotkoff)—and the diastolic level (the point at which the sounds disappear [phase V Korotkoff]) should be recorded. In some children, Korotkoff sounds can be heard to 0 mm Hg. If Korotkoff sounds persist as the level approaches 0 mm Hg, the point of muffling of the sound is used (phase IV Korotkoff) to indicate the diastolic pressure. |
| 8. The BP should be recorded to the closest 2 mm Hg on the manometer (or 1 mm Hg on electronic devices). |

BP, blood pressure.
Role of echocardiography

There are 2 recommendations for echocardiography: (1) routine echocardiographic evaluation is recommended for children with confirmed hypertension and (2) the echocardiographic assessment should include measurements of left ventricular mass index (LVMI), systolic and diastolic left ventricular (LV) function, and evaluation of the aortic arch.

Updates

CHEP will update these recommendations annually.

Introduction

The prevalence of hypertension in children is rising, in large part because of the childhood obesity epidemic. Elevated BP in childhood tracks to adulthood, in which hypertension is associated with adverse health outcomes, including early cardiovascular events. Hypertensive children may display evidence of target organ damage at presentation, and thus prompt identification and treatment of hypertensive children is important. Although the prevalence of primary hypertension is rising in children, secondary causes of hypertension remain common and account for 35%-55% of outpatient diagnoses. In children <5 years, primary hypertension is uncommon, and secondary causes need to be aggressively sought to guide therapy and clinical follow-up. The most common causes of secondary hypertension in children are renal, renovascular, endocrine, and cardiac disorders. Conversely, in obese children and adolescents, primary hypertension now predominates.

There has been increasing awareness of the need to measure BP regularly in children, and primary care practitioners have expressed a need for guidance in BP measurement, evaluation, and management in children. In response to clinician requests, CHEP developed a pediatric subcommittee in 2013 to develop pediatric-specific BP recommendations. The inaugural recommendations here address the measurement of BP, the criteria for diagnosis of hypertension, and the evaluation of hypertensive children. These recommendations are intended to guide pediatric health care providers but should not replace clinical judgement. Clinicians should consider individual patient and family circumstances when applying the recommendations to individual children.

Methods

Hypertension Canada’s CHEP Guidelines Task Force (GTF) is a multidisciplinary panel of content and methodological experts comprised of 1 Chair, a Central Review Committee (CRC), and 15 subgroups. Each subgroup addresses a distinct content area (Supplemental Appendix S1; presents the current CHEP membership list). Members of the Canadian Task Force on Preventive Health Care, the Canadian Diabetes Association Guidelines Committee, the Canadian Society of Nephrology, the Canadian Stroke Network, the Canadian Cardiovascular Society, and the Canadian Cardiovascular Harmonized National Guideline Endeavour Initiative regularly collaborate with CHEP members to facilitate harmonization of hypertension-related recommendations across organizations. In many cases, CHEP GTF members serve as volunteers for multiple organizations.

Systematic literature searches current to April 2015 were performed by a Cochrane Collaboration librarian in MEDLINE/PubMed using text words and MeSH headings. Search terms included hypertension[MeSH], hypertensi*[ti, ab], and BP; these were combined with topic-specific terms. References of identified articles were also manually searched. Details of search strategies and retrieved articles are available on request. Cross-sectional and cohort studies were reviewed for assessing BP measurement, diagnosis, and evaluation of pediatric hypertension.

The pediatric subgroup examined the search results. Study characteristics and study quality were assessed using prespecified standardized algorithms developed by CHEP for the critical appraisal of cohort studies. Recommendations were graded according to the strength of their underlying evidence (for details see Supplemental Table S1), ranging from Grade A (strongest evidence, based on high-quality studies) to Grade D (weakest evidence, based on low-powered imprecise studies or expert opinion alone). Although CHEP does not use the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) recommendation scheme, it should be noted that all CHEP recommendations are considered to be “strong” in nature (ie, CHEP refrains from making “weak” recommendations).

Thus, the CHEP grading scheme refers only to the quality of evidence and not to the relative strength of the recommendation.

Pediatric subgroup members comprise hypertension specialists in pediatric cardiology, pediatric nephrology, and nursing. The pediatric subgroup was responsible for reviewing search results and drafting the recommendations. An independent CRC consisting of methodological experts with no industry affiliations independently reviewed, graded, and refined the proposed recommendations, which were then presented at a consensus conference of the GTF in Toronto, Ontario, Canada on October 22, 2015. This meeting included the Chair, CRC, and members of all subgroups. Further revisions to proposed recommendations were based on these discussions.

After the consensus meeting, the recommendations were finalized and submitted electronically to all 75 voting members of the CHEP GTF for approval. Members with potential conflicts of interest recused themselves from voting on specific recommendations (a list of conflicts is available in Supplemental Appendix S2). Recommendations receiving ≥ 70% approval passed. The CHEP recommendations process is in accordance with the AGREE II guidelines and has been externally reviewed. A summary of how the CHEP process aligns with AGREE II can be found online at http://guidelines.hypertension.ca/about/overview-process/. Materials to assist with patient and public education based on these recommendations are available at http://www.hypertension.ca.

I. Accurate measurement of BP in children

Recommendations

1. BP should be measured regularly in children 3 years of age and older by a health care professional using standardized pediatric techniques (Table 1) (Grade D).
2. BP may be measured with a mercury sphygmomanometer, aneroid sphygmomanometer, or oscillometric device (Grade D). Abnormal oscillometric values should be confirmed with auscultation (Grade C).

3. BP varies with age, sex, and height in children, and BP values should therefore be compared with norms for age, sex, and height (Table 2) (Grade D).

Background. Accurate measurement of BP is critical for the diagnosis of hypertension and its management. Although there are practical challenges to accurately measuring BP in infants and very young children, it is important to measure BP regularly in children 3 years of age and older. The measurement of BP in children requires specific techniques. A standardized approach is presented in Table 1.

Different BP measurement methods exist for children including office BP measurement, ambulatory BP measurement (ABPM) and home BP measurement (HBPM). Historically office BP has been the predominant method to measure BP in children. This may be performed using auscultation (with mercury or aneroid sphygmomanometers) or with an oscillometric device. Mercury has long been considered the gold standard; however, because of its potential toxicity, it has largely been removed from health care settings. Aneroid sphygmomanometers and oscillometric devices represent alternatives for pediatric BP measurement. Aneroid sphygmomanometers have been evaluated in several small studies, yield similar results to mercury sphygmomanometers, but must be properly calibrated.13,14 The benefits of oscillometric measurement have been well documented in adults and include the lack of need for specialized training and low interobserver variability. Limitations of the present oscillometric devices in children include that the algorithms are designed for adult BP ranges, and these devices may not perform as well at the lower BP values common in young children. Additionally, in young children, the high initial cuff inflation and the longer time needed to obtain a reading may preclude obtaining a reliable resting BP. The present literature comparing oscillometric devices to mercury or aneroid auscultatory methods presents conflicting results.15-19 The oscillometric device manufacturer, era, study setting, and study populations are heterogeneous, which may contribute to the spectrum of results observed. There is limited literature comparing auscultatory and oscillometric techniques in very young children. Therefore, it is reasonable to use either the auscultatory technique or an oscillometric device. Abnormal oscillometric values should be confirmed with auscultation.

Normative pediatric data now exist for both auscultatory and oscillometric methods.20,21 Because of changes in BP with age, sex, and height, measured values should be compared with normative data in all children (Table 2). HBPM is used less frequently in children than in adults. Limited studies suggest that HBPM can be performed in children starting at 6 years of age.22-24 Patients or parents of younger children who measure their BP at home should have adequate training, including direct observation.

II. Criteria for diagnosis of hypertension in children

Recommendations

1. Using office BP measurements, children can be diagnosed as hypertensive if SBP or DBP is ≥ the 95th percentile for age, sex, and height, measured on at least 3 separate occasions (Grade C).

2. If the BP is ≥ the 95th percentile, BP should be staged. Stage 1 is defined by BP between the 95th and 99th percentiles plus 5 mm Hg. Stage 2 is defined by BP > the 99th percentile plus 5 mm Hg (Grade D).
 i. If BP is stage 1, BP measurements should be repeated on 2 more occasions within 1 month; if hypertension is confirmed, evaluation (as described in section IV) or appropriate referral should be initiated within 1 month, or both (Grade D).
 ii. If BP is stage 2, prompt referral should be made for evaluation and therapy (Grade C).

3. All children with suspected or confirmed hypertension should undergo a hypertension-focused history and physical evaluation (Table 3) (Grade C).

Background. The diagnosis of hypertension in children is based on 3 separate measurements of SBP or DBP ≥ the 95th percentile for age, sex, and height. This definition was initially based on being at the extreme end of a physiological measurement, which is normally distributed in children. Because of the absence of hard outcomes for children with hypertension, there is a need to evaluate surrogate markers and consider the future implications of BP values documented during childhood.

Table 2. Determining normative data for BP values in children (Grade D)

| 1. The BP tables use growth parameters as defined by the Centers for Disease Control and Prevention (CDC) growth charts. |
| 2. The normative BP data obtained with auscultatory method includes the US National Health and Nutrition Examination Survey from 1999-2000. Normative BP data for oscillometric measurements are now available. |
| 3. To determine BP percentile, use the standard CDC height charts to determine the height percentile. |
| 4. Measure the child’s BP. Use the appropriate sex table. Locate the child’s age on the left side of the table and follow the age row horizontally across the table to the intersection of the line for the height percentile as shown in the vertical column. |
| 5. The 50th, 90th, 95th, and 99th percentiles are defined for systolic and diastolic BP based on sex, age, and height. |

| BP, blood pressure. |

Table 3. History and physical examination (Grade C)

| 1. Medical history: |
| Symptoms |
| Of hypertension |
| Of an underlying disorder* |
| Medical history |
| For underlying cause of hypertension,* including neonatal history |
| Identify other cardiovascular risk factors including inactivity, smoking, and dietary factors |
| Family history |
| 2. Patient physical examination: |
| Height, weight, and body mass index |
| Vital signs, including upper and lower limb BP measurements |
| Evaluation for signs of end-organ damage |
| Fundi, cardiovascular, and neurologic systems |
| Evaluation for underlying cause of hypertension* |

* Systems to review include renal, cardiovascular, endocrine, and neurologic, as well as medications/drugs and sleep disorders.
Children with BP ≥ the 95th percentile for age, sex, and height can have evidence of target organ damage.25-31 Additionally, elevated BP in childhood predicts hypertension in adulthood, as demonstrated in a recent meta-regression analysis.4

Staging is important because children with stage 2 hypertension should receive prompt specialist evaluation. In these children, clinical symptoms are more common, there is an increased prevalence of target organ damage, and hypertensive emergencies are more frequent.

A focused history and physical examination is important in determining symptoms and gaining insight into the possible cause in cases of secondary hypertension (Table 3). Children with secondary hypertension are more likely to have a history of prematurity, and renovascular hypertension should be considered in children with a neonatal history of umbilical artery catheterization.8,35 Children with primary hypertension are more likely to have a positive family history of hypertension.57,36 Cardiovascular risk factors (low physical activity, high-salt diet, low fruit intake, smoking) should be documented, because these predict target organ damage and future atherosclerosis in hypertensive children.25,37-40 The physical examination is important to document body mass index, ensure that there is no BP difference between the upper and lower extremities (suggests possible coarctation of the aorta), and evaluate for target organ damage, including retinal changes, signs of heart failure, or neurologic abnormalities.

III. Assessment of overall cardiovascular risk in hypertensive children

Recommendations

1. Cardiovascular risk factors should be assessed in hypertensive children (Grade C).

Background. Pediatric hypertension clusters with other cardiovascular risk factors, including obesity, insulin resistance, and dyslipidemia.42-51 These cardiovascular changes and risk factors track into, and may progress, during adulthood.25-53 There is clear evidence from large cohort studies that early intervention during childhood can modify future cardiovascular risk.76 The Cardiovascular Risk in Young Finns study demonstrated that adult vascular dysfunction (measured by carotid intima-media thickness) is predicted by childhood cardiovascular risk factors, including hypertension.37 Increased physical activity and dietary improvement protect against future atherosclerosis. The Pathologic Determinants of Atherosclerosis in Youth study showed that changes in cardiovascular risk factors during adolescence are important predictors of atherosclerosis in adulthood.55 Many of the cardiovascular risk factors identified are modifiable, indicating that intervention during childhood has important potential benefits in modifying the natural history of pediatric hypertension.41

IV. Routine laboratory tests for the investigation of children with hypertension

Recommendations

1. Routine tests that should be performed for the investigation of all children with hypertension include:

 i. Blood chemistry (sodium, potassium, chloride, total CO₂, and creatinine) (Grade D)
 ii. Urinalysis (Grade D)
 iii. Renal ultrasonography (Grade D)

2. Routine laboratory tests that should be performed for the assessment of cardiovascular risk in all children with hypertension include the following:

 i. Fasting blood glucose (Grade C)
 ii. Serum total cholesterol and high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride levels (Grade C)

3. Routine tests that should be performed for the assessment of target organ damage in all children with hypertension include the following:

 i. Echocardiography (Grade C);
 ii. Retinal examination (Grade C);
 iii. Albumin-to-creatinine ratio (first-morning determination) (Grade D)

Background. Routine investigations in hypertensive children are directed at determining the underlying cause, evaluating target organ damage, and assessing common comorbidities associated with primary hypertension. Children with secondary hypertension are more likely to have higher creatinine levels or lower calculated glomerular filtration rate and higher serum potassium levels.7,8,36 Similarly, children with secondary hypertension are more likely to have renal abnormalities detected by ultrasonography.7,56 Urinalysis may detect proteinuria in hypertensive children.57,58 Given the predominance of renal parenchymal and renovascular diseases in pediatric secondary hypertension (50%-80%), these basic investigations should identify most causes of secondary hypertension.

Hypertensive children should be evaluated for comorbid cardiovascular risk factors. This includes a fasting glucose determination to assess insulin resistance and a lipid profile to diagnose dyslipidemia, given the known clustering of these risk factors with pediatric hypertension.41,49,50,59 The modifiable nature of these risk factors mandates early identification and intervention to prevent long-term cardiovascular sequelae.

Assessment of target organ damage is recommended for children with hypertension. Routine echocardiography should be used to assess for possible LV hypertrophy (LVH) and quantify LVMI (discussed further in section VI).32,60,61 Up to 50% of children with hypertension have abnormalities on retinal examination or arteriolar narrowing, or both.28,30,44,62 Albuminuria is also common at presentation in hypertensive children.28 Albuminuria is a predictor of LVMI and is associated with regression of LVH with BP control.63

V. ABPM in children

Recommendations

1. For children with elevated office BP readings, ABPM should be guided by a physician with expertise in pediatric hypertension; ABPM is useful to classify BP (Table 4) (Grade C).64
2. Physicians should use only ABPM devices that have been validated independently in children using established
and white coat hypertension. In children, masked hypertension, an important proportion has masked hypertension. ABPM may be useful to classify BP. A schema for the classification of hypertension in children is presented in Table 4. In cross-sectional studies of children evaluated for hypertension, LVH is associated with evidence of end organ damage, including LVH. A standard approach to obtaining ABPM readings in children is presented in Table 5. ABPM may also be considered in the evaluation of secondary hypertension, to evaluate the risk of target organ damage, and to assess BP control during antihypertensive drug treatment.

VI. Role of echocardiography

Recommendations
1. Routine echocardiographic evaluation in children with confirmed hypertension is recommended (Grade D).
2. The echocardiographic assessment should include measurements of LVMI, systolic and diastolic LV function, and evaluation of the aortic arch (Grade D).

Background. LVH is common at the time of presentation in hypertensive children who undergo echocardiography (prevalence of 15%-40%). LVH is more likely in secondary hypertension. Target organ damage may influence the medical treatment of hypertension; thus diagnosing LVH is important in managing hypertensive children. Given the potential for aortic arch obstruction as a cause of secondary hypertension, echocardiographic evaluation should include evaluation for coarctation of the aorta as well as chamber dimensions and indices of systolic and diastolic ventricular function, which may be altered in hypertensive children. Follow-up echocardiography should be considered in children with uncontrolled hypertension or LVH at baseline.

Table 4. Suggested schema to classify BP in children

<table>
<thead>
<tr>
<th>Classification</th>
<th>Office BP</th>
<th>Mean ambulatory SBP or DBP during awake or sleep period, or both</th>
<th>BP load (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White coat hypertension</td>
<td>≥95th percentile</td>
<td><95th percentile</td>
<td><25</td>
</tr>
<tr>
<td>Masked hypertension</td>
<td><95th percentile</td>
<td>≥95th percentile</td>
<td>≥25</td>
</tr>
<tr>
<td>Ambulatory hypertension</td>
<td>≥95th percentile</td>
<td>≥95th percentile</td>
<td>25-50</td>
</tr>
<tr>
<td>Severe ambulatory hypertension</td>
<td>≥95th percentile</td>
<td>≥95th percentile</td>
<td>>50</td>
</tr>
</tbody>
</table>

BP, blood pressure; DBP, diastolic BP; SBP, systolic BP.

Table 5. Standard approach to obtaining ABPM readings in children (Grade D)

1. ABPM should be performed by a health care professional with specific training in application of the device and interpretation of ABPM data in children.
2. Monitor should be applied to the nondominant arm unless contraindicated or on the arm with the higher BP if a significant discrepancy between the extremities exist.
3. BP should be recorded every 15-20 minutes during waking hours and every 20-30 minutes during sleep.
4. BP measured with the device should be compared with resting clinic BP by the same technique used by ABPM (auscultatory or oscillometric). These resting BP measurements made immediately after the application of the ABPM device should be edited out.
5. Patients should record activity, sleep/wake times, and antihypertensive medication administration in a diary.
6. A minimum of 1 reading per hour (including during sleep) and at least 40-50 readings for a full 24-hour report are needed to consider the study optimal for interpretation.
7. ABPM software should be programmed to discard values that fall outside the following range:
 - SBP 60-220 mm Hg
 - DBP 35-120 mm Hg
 - Heart rate 40-180 mm Hg
 - Pulse pressure 40-120 mm Hg
8. Standard calculations should be reported during the 24-hour awake and sleep periods:
 - Mean ambulatory SBP and DBP
 - BP load (percentage of readings > the ambulatory 95th percentile)
 - Dipping (mean awake BP – mean sleep BP)/mean awake BP x 100) for both SBP and DBP

Acknowledgements
CHBP thanks Ms Susan Carter for technical assistance with the manuscript and administrative support.

Funding Sources
The CHBP is operated and funded by Hypertension Canada. The members of the CHBP Committee are unpaid volunteers who contribute their time and expertise to the annual development and dissemination of the CHBP recommendations. To maintain professional credibility of the content, the process for the development of the recommendations is fully independent and free of external influence. External partners assist with the dissemination of the approved recommendations.
Disclosures
A complete list of author disclosures is available in Supplemental Appendix S2.

References

Supplementary Material
To access the supplementary material accompanying this article, visit the online version of the Canadian Journal of Cardiology at www.onlinecjc.ca and at http://dx.doi.org/10.1016/j.cjca.2016.02.075.