Canadian Journal of Cardiology
Clinical Research| Volume 32, ISSUE 12, P1419-1424, December 2016

Download started.


Lack of Association Between Extracranial Carotid and Vertebral Artery Disease and Stroke After Transcatheter Aortic Valve Replacement

Published:March 29, 2016DOI:



      Carotid artery stenosis is a risk factor for stroke after surgical aortic valve replacement, but it is unknown whether carotid and vertebral artery disease impacts the risk of stroke after transcatheter aortic valve replacement (TAVR).


      We reviewed 294 consecutive cases of TAVR at a tertiary care medical centre. Thirty-one patients without preoperative carotid/vertebral duplex ultrasonograms were excluded. Carotid or vertebral artery disease was defined on the basis of >50% stenosis. Outcomes were stroke within 30 days after TAVR, 30-day mortality, and overall survival.


      Fifty-one patients (19%) had at least 50% stenosis of a carotid or vertebral artery. The carotid and vertebral artery disease group had higher rates of coronary artery disease, previous coronary artery bypass surgery, and peripheral artery disease compared with the control group. Transfemoral access was less common in the carotid and vertebral artery disease group (55% vs 77%; P < 0.01). Stroke occurred in 6.8% of patients (n = 18) within 30 days after TAVR, but no patients in the carotid and vertebral artery disease group had a stroke. The presence of at least 50% stenosis of a carotid or vertebral artery was not predictive of stroke by logistic regression. There was no difference in 30-day mortality (10% vs 4%; P = 0.11) and overall survival (log-rank test P = 0.84) between the groups.


      The presence or absence of carotid or vertebral artery stenosis was not significantly related to the occurrence of stroke after TAVR. Routine screening for carotid and vertebral artery disease before TAVR does not appear justified.



      La sténose carotidienne est un facteur de risque d’accident vasculaire cérébral (AVC) après le remplacement chirurgical de la valvule aortique, mais on ignore si l’atteinte de l’artère carotide et de l’artère vertébrale a une incidence sur le risque d’AVC après le remplacement valvulaire aortique par cathéter (RVAC).


      Nous avons passé en revue 294 cas consécutifs de RVAC d’un centre médical de soins tertiaires. Trente et un patients n’ayant pas subi d’échographie en mode duplex des artères carotides et vertébrales avant la chirurgie ont été exclus. L’atteinte de l’artère carotide et de l’artère vertébrale a été définie en fonction d’une sténose >50 %. Les résultats étaient l’AVC dans les 30 jours après le RVAC, la mortalité à 30 jours et la survie globale.


      Cinquante et un patients (19 %) avaient au moins une sténose de l’artère carotide ou de l’artère vertébrale de 50 %. Le groupe ayant une atteinte de l’artère carotide et de l’artère vertébrale montrait des taux plus élevés de maladies coronariennes, de pontages coronariens antérieurs et de maladies artérielles périphériques que le groupe témoin. La voie transfémorale était moins fréquente dans le groupe ayant une atteinte de l’artère carotide et de l’artère vertébrale (55 % vs 77 %; P < 0,01). L’AVC survenait chez 6,8 % des patients (n = 18) dans les 30 jours après le RVAC, mais aucun patient du groupe atteint d’une sténose de l’artère carotide et de l’artère vertébrale ne subissait d’AVC. La régression logistique démontrait que la présence d’une atteinte de l’artère carotide et de l’artère vertébrale d’au moins 50 % ne constituait pas un prédicteur de l’AVC. Il n’existait aucune différence de la mortalité à 30 jours (10 % vs 4 %; P = 0,11) et de la survie globale (test logarithmique par rangs P = 0,84) entre les groupes.


      La présence ou l’absence de sténose de l’artère carotide ou de l’artère vertébrale n’était pas significativement associée à la survenue de l’AVC après le RVAC. Le dépistage systématique de l’atteinte de l’artère carotide et de l’artère vertébrale avant le RVAC ne semble pas justifié.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Leon M.B.
        • Smith C.R.
        • Mack M.
        • et al.
        Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.
        N Engl J Med. 2010; 363: 1597-1607
        • Mastoris I.
        • Schoos M.M.
        • Dangas G.D.
        • Mehran R.
        Stroke after transcatheter aortic valve replacement: incidence, risk factors, prognosis, and preventive strategies.
        Clin Cardiol. 2014; 37: 756-764
        • Miller D.C.
        • Blackstone E.H.
        • Mack M.J.
        • et al.
        Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial.
        J Thorac Cardiovasc Surg. 2012; 143: 832-843.e813
        • Ozatik M.A.
        • Gol M.K.
        • Fansa I.
        • et al.
        Risk factors for stroke following coronary artery bypass operations.
        J Card Surg. 2005; 20: 52-57
        • Brott T.G.
        • Halperin J.L.
        • Abbara S.
        • et al.
        2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery.
        Vasc Med. 2011; 16: 35-77
        • Hynes B.G.
        • Rodes-Cabau J.
        Transcatheter aortic valve implantation and cerebrovascular events: the current state of the art.
        Ann N Y Acad Sci. 2012; 1254: 151-163
        • Goldstein S.A.
        • Evangelista A.
        • Abbara S.
        • et al.
        Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging: endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance.
        J Am Soc Echocardiogr. 2015; 28: 119-182
        • Kappetein A.P.
        • Head S.J.
        • Genereux P.
        • et al.
        Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document.
        J Am Coll Cardiol. 2012; 60: 1438-1454
        • Steinvil A.
        • Leshem-Rubinow E.
        • Abramowitz Y.
        • et al.
        Prevalence and predictors of carotid artery stenosis in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation.
        Catheter Cardiovasc Interv. 2014; 84: 1007-1012
        • Arnold M.
        • Schulz-Heise S.
        • Achenbach S.
        • et al.
        Embolic cerebral insults after transapical aortic valve implantation detected by magnetic resonance imaging.
        JACC Cardiovasc Interv. 2010; 3: 1126-1132
        • Rodes-Cabau J.
        • Dumont E.
        • Boone R.H.
        • et al.
        Cerebral embolism following transcatheter aortic valve implantation: comparison of transfemoral and transapical approaches.
        J Am Coll Cardiol. 2011; 57: 18-28
        • Ghanem A.
        • Muller A.
        • Nahle C.P.
        • et al.
        Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging.
        J Am Coll Cardiol. 2010; 55: 1427-1432
        • Dashe J.F.
        • Pessin M.S.
        • Murphy R.E.
        • Payne D.D.
        Carotid occlusive disease and stroke risk in coronary artery bypass graft surgery.
        Neurology. 1997; 49: 678-686
        • Kablak-Ziembicka A.
        • Przewlocki T.
        • Hlawaty M.
        • et al.
        Internal carotid artery stenosis in patients with degenerative aortic stenosis.
        Kardiol Pol. 2008; 66 (discussion 843-4): 837-842
        • Lin J.C.
        • Kabbani L.S.
        • Peterson E.L.
        • et al.
        Clinical utility of carotid duplex ultrasound before cardiac surgery.
        J Vasc Surg. 2016; 63: 710-714
        • Schultheis M.
        • Saadat S.
        • Dombrovskiy V.
        • et al.
        Carotid stenosis in cardiac surgery—no difference in postoperative outcomes.
        Thorac Cardiovasc Surg. 2016 Feb 23; ([e-pub ahead of print])
        • Li Y.
        • Walicki D.
        • Mathiesen C.
        • et al.
        Strokes after cardiac surgery and relationship to carotid stenosis.
        Arch Neurol. 2009; 66: 1091-1096