Advertisement
Canadian Journal of Cardiology
Review| Volume 32, ISSUE 12, P1552-1560, December 2016

Monoclonal Antibodies for the Treatment of Hypercholesterolemia: Targeting PCSK9

      Abstract

      More than a century after German physician Paul Ehrlich put forth the idea of a “magic bullet” that could seek out and neutralize disease-causing agents in the body, the first monoclonal antibodies (mAbs) to lower low-density lipoprotein cholesterol (LDL-C) have been introduced into clinical use. This novel class of lipid-lowering agents targets proprotein convertase subtilisin/kexin type 9 (PCSK9), an enzyme that chaperones hepatic LDL receptors (LDLRs) toward intracellular degradation, reducing LDLR-mediated endocytosis and the clearance of LDL-C from the circulation. These new drugs represent the first mAb therapy intended for long-term cardiovascular use. We review the development of mAbs, the selection of PCSK9 as a target, and the current safety and efficacy data and regulatory status of these new therapeutic agents. We also provide guidance to clinicians regarding the potential role for these new agents in clinical practice.

      Résumé

      Plus d’un siècle après que le médecin allemand Paul Ehrlich a avancé l’idée d’un « projectile magique » capable de trouver et de neutraliser les agents pathogènes présents dans l’organisme, les premiers anticorps monoclonaux visant à réduire le taux de cholestérol des lipoprotéines de basse densité (C-LDL) ont fait leur apparition dans l’usage clinique. Cette nouvelle classe d’agents hypolipidémiants cible la proprotéine convertase subtilisine/kexine de type 9 (PCSK9), une enzyme qui se fixe aux récepteurs des LDL (LDLR) hépatiques et induit la dégradation intracellulaire, réduisant ainsi l’endocytose provoquée par les LDLR et l’élimination du C-LDL de la circulation. Ces nouveaux médicaments sont les premiers anticorps monoclonaux destinés au traitement cardiovasculaire à long terme. Dans cet article, nous passons en revue l’historique de la mise au point des anticorps monoclonaux et du choix de la PCSK9 comme cible, ainsi que les données actuelles relatives à l’innocuité et à l’efficacité et le statut réglementaire de ces nouveaux agents thérapeutiques. Nous adressons aussi quelques conseils aux cliniciens sur le rôle que ces nouveaux médicaments pourraient jouer dans la pratique clinique.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Winau F.
        • Westphal O.
        • Winau R.
        Paul Ehrlich—in search of the magic bullet.
        Microbes Infect. 2004; 6: 786-789
      1. “The Nobel Prize in Physiology or Medicine 1908—Award Ceremony Speech.” Nobel Media AB, 2014. Available at https://www.nobelprize.org/nobel_organizations/nobelmedia/. Accessed March 9, 2016.

        • Simon H.G.
        100 Great Operas and Their Stories: Act-by-Act Synopses.
        Anchor Books, New York1989
        • Foltz I.N.
        • Karow M.
        • Wasserman S.M.
        Evolution and emergence of therapeutic monoclonal antibodies: what cardiologists need to know.
        Circulation. 2013; 127: 2222-2230
      2. IMS Health data -mra, total prescription numbers and total sales from April 2014 through March 2015. Available at: https://knoema.com/IMSH2014/ims-health-top-line-market-data-2014?global-market=1000090-remicade. Accessed July 1, 2016.

        • Lacouture M.E.
        Mechanisms of cutaneous toxicities to EGFR inhibitors.
        Nature Rev Cancer. 2006; 6: 803-812
        • Hwang W.Y.
        • Foote J.
        Immunogenicity of engineered antibodies.
        Methods. 2005; 36: 3-10
        • Nelson A.L.
        • Dhimolea E.
        • Reichert J.M.
        Development trends for human monoclonal antibody therapeutics.
        Nat Rev Drug Discov. 2010; 9: 767-774
        • Krieckaert C.L.
        • Nurmohamed M.T.
        • Wolbink G.J.
        Methotrexate reduces immunogenicity in adalimumab treated rheumatoid arthritis patients in a dose dependent manner.
        Ann Rheum Dis. 2012; 71: 1914-1915
        • Goldstein J.L.
        • Brown M.S.
        A century of cholesterol and coronaries: from plaques to genes to statins.
        Cell. 2015; 161: 161-172
        • Hobbs H.H.
        • Russell D.W.
        • Brown M.S.
        • Goldstein J.L.
        The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein.
        Annu Rev Genet. 1990; 24: 133-170
      3. Khera AV, Won HH, Peloso GM, et al. Diagnostic yield of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol 2016;67:2578-89.

        • Innerarity T.L.
        • Mahley R.W.
        • Weisgraber K.H.
        • et al.
        Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia.
        J Lipid Res. 1990; 31: 1337-1349
        • Abifadel M.
        • Varret M.
        • Rabès J.P.
        • et al.
        Mutations in PCSK9 cause autosomal dominant hypercholesterolemia.
        Nat Genet. 2003; 34: 154-156
        • Humphries S.E.
        • Whittall R.A.
        • Hubbart C.S.
        • et al.
        Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk.
        J Med Genet. 2006; 43: 943-949
        • Tosi I.
        • Toledo-Leiva P.
        • Neuwirth C.
        • Naoumova R.P.
        • Soutar A.K.
        Genetic defects causing familial hypercholesterolaemia: identification of deletions and duplications in the LDL-receptor gene and summary of all mutations found in patients attending the Hammersmith Hospital Lipid Clinic.
        Atherosclerosis. 2007; 194: 102-111
      4. Learning about familial hypercholesterolemia. National Human Genome Research Institute. Available at www.genome.gov/25520184. Accessed May 1, 2016.

        • Marduel M.
        • Ouguerram K.
        • Serre V.
        • et al.
        Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation.
        Hum Mutat. 2013; 34: 83-87
        • Awan Z.
        • Choi H.Y.
        • Stitziel N.
        • et al.
        APOE p.Leu167del mutation in familial hypercholesterolemia.
        Atherosclerosis. 2013; 231: 218-222
        • Fouchier S.W.
        • Dallinga-Thie G.M.
        • Meijers J.C.
        • et al.
        Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia.
        Circ Res. 2014; 115: 552-555
        • Arca M.
        • Zuliani G.
        • Wilund K.
        • et al.
        Autosomal recessive hypercholesterolemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis.
        Lancet. 2001; 359: 841-847
        • Stitziel N.O.
        • Fouchier S.W.
        • Sjouke B.
        • et al.
        Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia.
        Arterioscler Thromb Vasc Biol. 2013; 33: 2909-2914
        • Nordestgaard B.G.
        • Chapman M.J.
        • Humphries S.E.
        • et al.
        Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society.
        Eur Heart J. 2013; 34: 3478-3490a
        • Moorjani S.
        • Roy M.
        • Torres A.
        • et al.
        Mutations of low-density-lipoprotein-receptor gene, variation in plasma cholesterol, and expression of coronary heart disease in homozygous familial hypercholesterolaemia.
        Lancet. 1993; 341: 1303-1306
        • Raal F.J.
        • Honarpour N.
        • Blom D.J.
        • et al.
        Inhibition of PCSK9 with evolocumab (AMG 145) in homozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial.
        Lancet. 2015; 385: 331-340
        • Genest J.
        • Hegele R.A.
        • Bergeron J.
        • et al.
        Canadian Cardiovascular Society position statement on familial hypercholesterolemia.
        Can J Cardiol. 2014; 30: 1471-1481
        • Benn M.
        • Watts G.F.
        • Tybjærg-Hansen A.
        • et al.
        Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217.
        Eur Heart J. 2016; 37: 1384-1394
        • De Ferrati S.
        • Rodday A.M.
        • Mendelson M.
        • et al.
        The prevalence of familial hypercholesterolemia in the 1999-2012 United States National Health and Nutrition Examination Survey (NHANES).
        Circulation. 2016; 133: 1067-1072
        • Talmud P.J.
        • Shah S.
        • Whittall R.
        • et al.
        Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study.
        Lancet. 2013; 381: 1293-1301
        • Thompsen J.
        • Thompson P.D.
        A systematic review of LDL apheresis in the treatment of cardiovascular disease.
        Atherosclerosis. 2006; 189: 31-38
        • Cuchel M.
        • Meagher E.A.
        • du Toit Theron H.
        • et al.
        Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study.
        Lancet. 2013; 381: 40-46
        • Rader D.J.
        • Kastelein J.J.
        Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia.
        Circulation. 2014; 129: 1022-1032
        • Seidah N.G.
        • Benjannet S.
        • Wickham L.
        • et al.
        The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation.
        Proc Natl Acad Sci U S A. 2003; 100: 928-933
        • Seidah N.G.
        • Awan Z.
        • Chrétien M.
        • Mbikay M.
        PCSK9: a key modulator of cardiovascular health.
        Circ Res. 2014; 114: 1022-1036
        • Cohen J.C.
        • Boerwinkle E.
        • Mosley Jr., T.H.
        • Hobbs H.H.
        Sequence variations in PCSK9, low LDL, and protection against coronary heart disease.
        N Engl J Med. 2006; 354: 1264-1272
        • Zhao Z.
        • Tuakli-Wosornu Y.
        • Lagace T.A.
        • et al.
        Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote.
        Am J Hum Genet. 2006; 79: 514-523
        • Rashid S.
        • Curtis D.E.
        • Garuti R.
        • et al.
        Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9.
        Proc Natl Acad Sci U S A. 2005; 102: 5374-5379
        • Awan Z.
        • Baass A.
        • Genest J.
        Proprotein convertase subtilisin/kexin type 9 (PCSK9): lessons learned from patients with hypercholesterolemia.
        Clin Chem. 2014; 60: 1380-1389
        • Giugliano R.P.
        • Sabatine M.S.
        Are PCSK9 inhibitors the next breakthrough in the cardiovascular field?.
        J Am Coll Cardiol. 2015; 65: 2638-2651
        • Robinson J.G.
        • Farnier M.
        • Krempf M.
        • et al.
        Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.
        N Engl J Med. 2015; 372: 1489-1499
        • Sabatine M.S.
        • Giugliano R.P.
        • Wiviott S.D.
        • et al.
        Efficacy and safety of evolocumab in reducing lipids and cardiovascular events.
        N Engl J Med. 2015; 372: 1500-1509
        • Ballantyne C.M.
        • Neutel J.
        • Cropp A.
        • et al.
        Results of bococizumab, a monoclonal antibody against proprotein convertase subtilisin/kexin type 9, from a randomized, placebo-controlled, dose-ranging study in statin-treated subjects with hypercholesterolemia.
        Am J Cardiol. 2015; 115: 1212-1221
        • Swiger K.J.
        • Martin S.S.
        PCSK9 inhibitors and neurocognitive adverse events: exploring the FDA directive and a proposal for N-of-1 trials.
        Drug Safety. 2015; 38: 519-526
      5. ClinicalTrials.gov. Evaluating PCSK9 Binding antiBody Influence oN coGnitive HeAlth in High cardiovascUlar Risk Subjects (EBBINGHAUS). NLM Identifier: NCT02207634. Available at http://clinicaltrials.gov/show/NCT02207634. Accessed March 9, 2016.

        • Fitzgerald K.
        • Frank-Kamenetsky M.
        • Shulga-Morskaya S.
        • et al.
        Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial.
        Lancet. 2014; 383: 60-68
        • Mancini G.B.
        • Baker S.
        • Bergeron J.
        • et al.
        Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Consensus Working Group update (2016).
        Can J Cardiol. 2016; 32: S35-S65
        • Nissen S.E.
        • Stroes E.
        • Dent-Acosta R.E.
        • et al.
        GAUSS-3 Investigators. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 Randomized clinical trial.
        JAMA. 2016; 315: 1580-1590