Abstract
Background
Although epicardial adipose tissue (EAT) volume is associated with increased incidence
of coronary artery disease (CAD), its role in myocardial systolic dysfunction is unclear.
The present study aimed to identify independent determinants of EAT volume in patients
without obstructive CAD, and to evaluate the association between EAT volume (vs other
measures of obesity) and myocardial systolic strain analysis.
Methods
We prospectively recruited 130 patients without obstructive CAD on contrast-enhanced
cardiac computed tomography imaging and normal left ventricular ejection fraction
on 3-dimensional (3D) echocardiography. EAT volume was quantified from cardiac computed
tomography imaging, and 3D multidirectional (longitudinal, circumferential, radial,
and area) strain were measured.
Results
The mean EAT volume was 97.5 ± 43.7 cm3. In multivariable analysis, measures of obesity (body mass index [P = 0.007] and waist/hip ratio [P = 0.001]) were independently associated with larger EAT volume. EAT volume was correlated
with 3D global longitudinal (r = 0.601; P < 0.001), circumferential (r = 0.375; P < 0.001), radial (r = −0.546; P < 0.001), and area (r = 0.558; P < 0.001) strain. In multivariable analyses, epicardial fat volume was the strongest
predictor of 3D global longitudinal (standardized β = 0.512; P < 0.001), circumferential (standardized β = 0.242; P = 0.006), radial (standardized β = −0.422; P < 0.001), and area (standardized β = 0.428; P < 0.001) strain. In contrast, other measures of obesity including body mass index
and waist/hip ratio were not independent determinants of 3D multidirectional global
strain (all P > 0.05).
Conclusions
EAT volume is independently associated with impaired myocardial systolic function
despite preserved 3D left ventricular ejection fraction and absence of obstructive
CAD, and might play a significant role in the pathophysiology of diabetic, obesity,
and metabolic heart disease.
Résumé
Introduction
Bien que le volume du tissu adipeux de l’épicarde (TAE) soit associé à une fréquence
accrue de coronaropathie, son rôle dans la dysfonction systolique myocardique est
incertain. La présente étude visait à cerner les déterminants indépendants du volume
du TAE chez des patients exempts de coronaropathie obstructive, et à évaluer le lien
entre le volume du TAE (par rapport à d’autres mesures de l’obésité) et l’analyse
de la déformation systolique myocardique.
Méthodes
Nous avons recruté de façon prospective 130 patients chez qui la tomodensitométrie
cardiaque avec injection d’un produit de contraste n’avait pas révélé de coronaropathie
obstructive, et dont la fraction d’éjection ventriculaire gauche (FEVG) était normale
selon l’échocardiographie tridimensionnelle (3D). Le volume du TAE a été quantifié
par tomodensitométrie cardiaque, et la déformation a fait l’objet de mesures 3D et
multidirectionnelles (longitudinale, circonférentielle, radiale et de l’espace).
Résultats
Le volume moyen du TAE était de 97,5 ± 43,7 cm3. Lors de l’analyse multivariée, les mesures de l’obésité (indice de masse corporelle
[IMC; P = 0,007] et rapport taille/hanches [RTH; P = 0,001]) étaient associées de façon indépendante à un volume plus grand. Le volume
du TAE était en corrélation avec la déformation globale selon les mesures 3D et les
mesures longitudinale (r = 0,601; P < 0,001), circonférentielle (r = 0,375; P < 0,001), radiale (r = -0,546; P < 0,001) et de l’espace (r = 0,558; P < 0,001). Dans le cadre des analyses multivariées, le volume du TAE était l’indicateur
le plus fiable d’une déformation globale selon les mesures 3D et longitudinale (β
standardisé = 0,512; P < 0,001), circonférentielle (β standardisé = 0,242; P = 0,006), radiale (β standardisé = -0,422; P < 0,001) et de l’espace (β standardisé = 0,428; P < 0,001). En revanche, les autres mesures de l’obésité dont l’IMC et le RTH n’étaient
pas des déterminants indépendants de la déformation globale selon les mesures 3D et
multidirectionnelles (P > 0,05 dans tous les cas).
Conclusions
Le volume du TAE est associé de façon indépendante à une dysfonction systolique myocardique,
et ce, malgré l’absence d’altération de la FEVG, selon les mesures 3D, et de coronaropathie
obstructive, et pourrait être un facteur important de la physiopathologie de la maladie
cardiaque liée au diabète, à l’obésité et au métabolisme.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of CardiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Echocardiographic epicardial fat: a review of research and clinical applications.J Am Soc Echocardiogr. 2009; 22: 1311-1319
- Human epicardial fat: what is new and what is missing?.Clin Exp Pharmacol Physiol. 2011; 38: 879-887
- Greater expression of inflammatory cytokines, adrenomedullin, and natriuretic peptide receptor-C in epicardial adipose tissue in coronary artery disease.Regul Pept. 2010; 165: 210-217
- Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease.Am J Physiol Endocrinol Metab. 2012; 303: E937-E949
- Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features.Trends Endocrinol Metab. 2011; 22: 450-457
- Epicardial adipose excision slows the progression of porcine coronary atherosclerosis.J Cardiothorac Surg. 2014; 9: 2
- Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden.Int J Cardiol. 2012; 158: 26-32
- Secretory products of guinea pig epicardial fat induce insulin resistance and impair primary adult rat cardiomyocyte function.J Cell Mol Med. 2011; 15: 2399-2410
- Increased myocardial dysfunction, dyssynchrony, and epicardial fat across the lifespan in healthy males.BMC Cardiovasc Disord. 2014; 14: 95
- Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus.Circulation. 2010; 122: 2538-2544
- Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study.Circ Cardiovasc Imaging. 2012; 5: 51-59
- Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus.Am J Cardiol. 2009; 104: 1398-1401
- Radiation dose to patients from cardiac diagnostic imaging.Circulation. 2007; 116: 1290-1305
- Quantification of coronary artery calcium using ultrafast computed tomography.J Am Coll Cardiol. 1990; 15: 827-832
- Pericardial and thoracic peri-aortic adipose tissues contribute to systemic inflammation and calcified coronary atherosclerosis independent of body fat composition, anthropometric measures and traditional cardiovascular risks.Eur J Radiol. 2012; 81: 749-756
- Quantification of epicardial fat by computed tomography: why, when and how?.J Cardiovasc Comput Tomogr. 2013; 7: 3-10
- EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography.J Am Soc Echocardiogr. 2012; 25: 3-46
- Simplified calculation of body-surface area.N Engl J Med. 1987; 317: 1098
- Human epicardial adipose tissue: a review.Am Heart J. 2007; 153: 907-917
- Multimodality imaging in diabetic heart disease.Curr Probl Cardiol. 2011; 36: 9-47
- Lipotoxic heart disease in obese rats: implications for human obesity.Proc Natl Acad Science U S A. 2000; 97: 1784-1789
- Myocardial uptake of circulating triglycerides in nondiabetic patients with heart disease.Diabetes. 2007; 56: 527-530
- Relation of echocardiographic epicardial fat thickness and myocardial fat.Am J Cardiol. 2010; 105: 1831-1835
- Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects.Int J Cardiol. 2007; 115: 272-273
- Relation between epicardial adipose tissue and left ventricular mass.Am J Cardiol. 2004; 94: 1084-1087
- Cardiac steatosis and left ventricular function in men with metabolic syndrome.J Cardiovasc Magn Reson. 2013; 15: 103
- Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular function.Int J Cardiol. 2014; 176: 360-366
- Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants.J Am Soc Echocardiogr. 2014; 27: 858-871
- Effect of obesity on left ventricular structure and myocardial systolic function: assessment by tissue Doppler imaging and strain/strain rate imaging.Echocardiography. 2007; 24: 802-809
- Central obesity: association with left ventricular dysfunction and mortality in the community.Am Heart J. 2008; 156: 975-981
- Glucose, obesity, metabolic syndrome, and diabetes: relevance to incidence of heart failure.J Am Coll Cardiol. 2010; 55: 283-293
- Improved ejection fraction after exercise training in obesity is accompanied by reduced cardiac lipid content.J Clin Endocrinol Metab. 2010; 95: 1932-1938
Article info
Publication history
Published online: June 23, 2016
Accepted:
June 19,
2016
Received:
February 3,
2016
Footnotes
See page 1491 for disclosure information.
Identification
Copyright
© 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.