Advertisement
Canadian Journal of Cardiology
Clinical Research| Volume 32, ISSUE 12, P1507-1512, December 2016

Myocardial Dimensions in Children With Hypertrophic Cardiomyopathy: A Comparison Between Echocardiography and Cardiac Magnetic Resonance Imaging

      Abstract

      Background

      The primary mode of imaging in hypertrophic cardiomyopathy (HCM) is transthoracic echocardiography (TTE). However, in adults inadequate acoustic windows lead to poor quantification of myocardial thickness compared with cardiac magnetic resonance (CMR) imaging. In comparison, children have better acoustic windows and TTE measurements of wall thickness might be more accurate. The aim of this study was to assess the performance of TTE compared with CMR for the assessment of myocardial thickness in children with HCM.

      Methods

      Nineteen children (median age, 12.7 years; range, 8.4-18.4 years) with known HCM were studied using TTE and CMR imaging on the same day. The left ventricle was measured off-line using the standard 16-segment model.

      Results

      With CMR imaging 304 (19 × 16) segments were analyzable whereas only 263 were analyzable using echocardiography. Wall thickness measurements according to TTE were greater than those according to CMR imaging in the basal anterolateral, midventricular anterior and anterolateral and apical inferior, lateral and septal segments and smaller for the midventricular inferior and inferoseptal segments. Reproducibility of CMR and TTE measurements was assessed using the intraclass correlation coefficient (ICC). CMR measurements showed excellent intrareader (ICC, 0.929-0.991) and moderate inter-reader (ICC range, 0.512-0.991) reproducibility. TTE measurements revealed moderate intrareader (ICC, 0.575-0.942) and poor inter-reader (ICC range, −1.02 to 0.939) reproducibility.

      Conclusions

      Echocardiography incompletely assesses circumferential myocardial thickness in a proportion of pediatric patients with HCM. Echocardiography under- and overestimates maximum wall thickness compared with CMR, depending on the location. Measurements using CMR are more reproducible than those obtained using echocardiography.

      Résumé

      Introduction

      Le mode d’imagerie principal de la cardiomyopathie hypertrophique (CMH) est l’échocardiographie transthoracique (ETT). Toutefois, les fenêtres acoustiques inadéquates chez les adultes entraînent une mauvaise quantification de l’épaississement du myocarde comparativement à l’imagerie par résonance magnétique (IRM) cardiaque. Par comparaison, comme les enfants ont de meilleures fenêtres acoustiques, les mesures de l’ETT de l’épaississement de la paroi seraient plus précises. L’objectif de la présente étude était d’évaluer la performance de l’ETT par rapport à celle de l’IRM cardiaque dans l’évaluation de l’épaississement du myocarde chez les enfants atteints de CMH.

      Méthodes

      Dix-neuf enfants (âge médian, 12,7 ans; étendue, 8,4-18,4 ans) atteints d’une CMH connue ont fait l’objet d’une étude au moyen de l’ETT et de l’IRM cardiaque le même jour. Le ventricule gauche a été mesuré hors ligne à l’aide du modèle habituel à 16 segments.

      Résultats

      Au moyen de l’IRM cardiaque, 304 (19 × 16) segments ont été analysés tandis que seulement 263 segments étaient analysables au moyen de l’échocardiographie. Les mesures de l’épaississement de la paroi selon l’ETT étaient plus grandes que celles selon l’IRM cardiaque dans les segments basaux antérolatéraux, médioventriculaires antérieurs et antérolatéraux et apicaux inférieurs, latéraux et septaux, et plus petites dans les segments médioventriculaires inférieurs et inféroseptaux. La reproductibilité des mesures de l’IRM cardiaque et de l’ETT a été évaluée à l’aide du coefficient de corrélation intraclasse (CCI). Les mesures de l’IRM cardiaque ont montré une excellente reproductibilité intraobservateur (CCI, 0,929-0,991) et une reproductibilité interobservateur modérée (étendue du CCI, 0,512-0,991). Les mesures de l’ETT ont révélé une reproductibilité intraobservateur modérée (CCI, 0,575-0,942) et une reproductibilité interobservateur médiocre (étendue du CCI, −1,02 à 0,939).

      Conclusions

      L’échocardiographie évalue de façon incomplète l’épaississement myocardique circonférentiel chez un certain nombre de patients de pédiatrie atteints de CMH. L’échocardiographie sous-estime et surestime l’épaississement maximal de la paroi comparativement à l’IRM cardiaque, selon la localisation. Les mesures au moyen de l’IRM cardiaque sont plus reproductibles que celles obtenues au moyen de l’échocardiographie.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lipshultz S.E.
        • Sleeper L.A.
        • Towbin J.A.
        • et al.
        The incidence of pediatric cardiomyopathy in two regions of the United States.
        N Engl J Med. 2003; 17: 1647-1655
        • Nugent A.W.
        • Daubeney P.E.
        • Chondros P.
        • et al.
        National Australian Childhood Cardiomyopathy Study. The epidemiology of childhood cardiomyopathy in Australia.
        N Engl J Med. 2003; 17: 1639-1646
        • Maron B.J.
        Hypertrophic cardiomyopathy: a systematic review.
        JAMA. 2002; 10: 1308-1320
        • Elliot P.
        • McKenna W.J.
        Hypertrophic cardiomyopathy.
        Lancet. 2004; 363: 1881-1891
        • Maron B.J.
        • Doerer J.J.
        • Haas T.S.
        • Tierney D.M.
        • Mueller F.O.
        Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006.
        Circulation. 2009; 8: 1085-1092
        • Biagini E.
        • Coccolo F.
        • Ferlito M.
        • et al.
        Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients.
        J Am Coll Cardiol. 2005; 8: 1543-1550
        • Rickers C.
        • Wilke N.M.
        • Jerosch-Herold M.
        • et al.
        Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy.
        Circulation. 2005; 112: 855-861
        • Spirito P.
        • Bellone P.
        • Harris K.M.
        • et al.
        Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy.
        N Engl J Med. 2000; 24: 1778-1785
        • Cerqueira M.D.
        • Weissman N.J.
        • Dilsizian V.
        • et al.
        Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.
        Circulation. 2002; 105: 539-542
        • Maron M.S.
        • Olivotto I.
        • Betocchi S.
        • et al.
        Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy.
        N Engl J Med. 2003; 348: 295-303
        • Efthimiadis G.K.
        • Pagourelias E.D.
        • Parcharidou D.
        • et al.
        Clinical characteristics and natural history of hypertrophic cardiomyopathy with midventricular obstruction.
        Circ J. 2013; 77: 2366-2374
        • Eriksson M.J.
        • Sonnenberg B.
        • Woo A.
        • et al.
        Long-term outcome in patients with apical hypertrophic cardiomyopathy.
        J Am Coll Cardiol. 2002; 39: 638-645
        • Moon J.
        • Shim C.Y.
        • Ha J.W.
        • et al.
        Clinical and echocardiographic predictors of outcomes in patients with apical hypertrophic cardiomyopathy.
        Am J Cardiol. 2011; 108: 1614-1619
        • Elliott P.M.
        • Poloniecki J.
        • Dickie S.
        • et al.
        Sudden death in hypertrophic cardiomyopathy: identification of high risk patients.
        J Am Coll Cardiol. 2000; 36: 2212-2218
        • Charron P.
        • Dubourg O.
        • Desnos M.
        • et al.
        Diagnostic value of electrocardiography and echocardiography for familial hypertrophic cardiomyopathy in genotyped children.
        Eur Heart J. 1998; 19: 1377-1382
        • Maron M.S.
        • Maron B.J.
        • Harrigan C.
        • et al.
        Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance.
        J Am Coll Cardiol. 2009; 54: 220-228
        • Moon J.C.
        • Fisher N.G.
        • McKenna W.J.
        • Pennell D.J.
        Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography.
        Heart. 2004; 90: 645-649
        • Maron B.J.
        • Haas T.S.
        • Lesser J.R.
        Images in cardiovascular medicine. Diagnostic utility of cardiac magnetic resonance imaging in monozygotic twins with hypertrophic cardiomyopathy and identical pattern of left ventricular hypertrophy.
        Circulation. 2007; 115: e627-e628
        • Romano R.
        • Losi M.A.
        • Migliore T.
        • et al.
        Evaluation of the left ventricular anatomy in hypertrophic cardiomyopathy: comparison between echocardiography and cardiac magnetic resonance imaging.
        Minerva Cardioangiol. 2008; 56: 181-187
        • Schnell F.
        • Riding N.
        • O’Hanlon R.
        • et al.
        Recognition and significance of pathological T-wave inversions in athletes.
        Circulation. 2015; 131: 165-173
        • Valente A.M.
        • Lakdawala N.K.
        • Powell A.J.
        • et al.
        Comparison of echocardiographic and cardiac magnetic resonance imaging in hypertrophic cardiomyopathy sarcomere mutation carriers without left ventricular hypertrophy.
        Circ Cardiovasc Genet. 2013; 6: 230-237
        • Nagueh S.F.
        • Bierig S.M.
        • Budoff M.J.
        • et al.
        American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy: Endorsed by the American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, and Society of Cardiovascular Computed Tomography.
        J Am Soc Echocardiogr. 2011; 24: 473-498
        • Gersh B.J.
        • Maron B.J.
        • Bonow R.O.
        • et al.
        2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
        Circulation. 2011; 124: 2761-2796
        • Cardim N.
        • Galderisi M.
        • Edvardsen T.
        • et al.
        Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 280