Advertisement
Canadian Journal of Cardiology
Clinical Research| Volume 33, ISSUE 2, P243-252, February 2017

Download started.

Ok

Are Existing Risk Scores for Nonvalvular Atrial Fibrillation Useful for Prediction or Risk Adjustment in Patients With Chronic Kidney Disease?

Published:September 30, 2016DOI:https://doi.org/10.1016/j.cjca.2016.08.018

      Abstract

      Background

      Comparative effectiveness studies are common in patients with nonvalvular atrial fibrillation (NVAF) and chronic kidney disease (CKD), but the accuracy of current thromboembolic (n = 4) and bleeding (n = 3) prediction scores used for risk adjustment are uncertain in these patients because previous studies have included few CKD patients.

      Methods

      This was a retrospective cohort study, using Cox models adjusted for time-varying coefficients, of nonanticoagulated adults with incident NVAF and kidney function (defined into Kidney Disease: Improving Global Outcomes [KDIGO] CKD categories) between 2002 and 2013.

      Results

      Of 58,451 patients (mean age 66 years, 31.3% with CKD) followed for a median of 31 months, 21.3% died, 12.6% had a thromboembolic event (4.2 per 100 patient-years), and 7.8% had a major bleed (2.6 per 100 patient-years). There were graded associations between kidney function and all-cause mortality (adjusted hazard ratio [aHR], 1.88 [95% confidence interval (CI), 1.79-1.98] for very high vs low risk KDIGO category), major bleeding (aHR, 1.61 [95% CI, 1.47-1.76]), and thromboembolic events (aHR, 1.13 [95% CI, 1.04-1.23]). All 7 prediction scores had significantly poorer c statistics in patients with CKD: 0.50-0.59; all P < 0.0001 compared with those with normal kidney function (c statistics 0.69-0.70 for the 4 thromboembolic risk scores and 0.60-0.68 for the 3 bleeding risk scores). Inclusion of KDIGO category did not improve calibration or discrimination statistics for current prediction scores.

      Conclusions

      Existing NVAF risk scores exhibit poor discrimination in patients with CKD, limiting their utility for clinical decision-making or for risk adjustment in comparative effectiveness studies. Although CKD is an independent risk factor for adverse events, adding KDIGO class to current risk scores did not improve their performance.

      Résumé

      Introduction

      Les études d’efficacité comparatives incluant des patients atteints de fibrillation auriculaire non valvulaire (FANV) et de néphropathie chronique (NC) sont relativement fréquentes. Cependant, l’exactitude des scores prévisionnels actuels des événements thromboemboliques (n = 4) et des hémorragies (n = 3) utilisés aux fins d’ajustement du risque demeure incertaine du fait que trop peu de patients atteints de NC ont jusqu’ici participé à des études.

      Méthodes

      Il s’agissait d’une étude de cohorte rétrospective pour la période comprise entre 2002 et 2013 effectuée à l’aide du modèle de régression de Cox, ajusté en fonction de coefficients variables dans le temps, chez des adultes atteints de FANV et de NC ne recevant pas de traitement anticoagulant (degrés d’insuffisance rénale définis selon la classification fournie dans les lignes directrices Kidney Disease: Improving Global Outcomes [KDIGO]).

      Résultats

      Des 58 451 patients (âge moyen de 66 ans; 31,3 % des patients atteints de NC) suivis pendant une période médiane de 31 mois, 21,3 % sont décédés, 12,6 % ont été victimes d’un événement thromboembolique (4,2 par 100 années-patients) et 7,8 % ont subi une hémorragie grave (2,6 par 100 années-patients). Une gradation du risque a été établie entre la fonction rénale et la mortalité de toutes causes (rapport de risques instantanés ajustés [RRIa] de 1,88 [intervalle de confiance (IC) à 95 % : 1,79 à 1,98] entre les patients à risque très élevé par rapport à ceux à faible risque selon la classification KDIGO), l’hémorragie grave (RRIa de 1,61 [IC à 95 % : 1,47 à 1,76]) et les événements thromboemboliques (RRIa de 1,13 [IC à 95 % : 1,04 à 1,23]). Comparativement aux patients dont la fonction rénale était normale (statistiques c de 0,69 à 0,70 pour les 4 scores de risque d’événement thromboembolique et de 0,60 à 0,68 pour les 3 scores de risque d’hémorragie), les statistiques c étaient significativement inférieures chez les patients atteints de NC pour l’ensemble des 7 scores prévisionnels, soit 0,50 à 0,59; P < 0,0001 pour l’ensemble. L’ajout de la classification KDIGO n’a donc pas permis d’améliorer la calibration ni la discrimination statistique des scores prévisionnels actuels.

      Conclusions

      Les scores de risque actuellement utilisés pour les patients atteints de FANV ne permettent pas une discrimination statistique efficace chez les patients atteints de NC, ce qui limite leur utilité aux fins de prise de décision en clinique et d’ajustement du risque dans le cadre des études d’efficacité comparatives. On sait que la présence d’une NC constitue un facteur de risque indépendant d’événements indésirables, mais l’ajout de la classification KDIGO aux scores de risque actuellement utilisés n’a pas permis d’améliorer leur utilité.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sandhu R.
        • Bakal J.A.
        • Ezekowitz J.A.
        • et al.
        The epidemiology of atrial fibrillation in adults depends on locale of diagnosis.
        Am Heart J. 2011; 161: 986-992
        • Olesen J.B.
        • Lip G.Y.
        • Kamper A.L.
        • et al.
        Stroke and bleeding in atrial fibrillation with chronic kidney disease.
        N Engl J Med. 2012; 367: 625-635
        • Soliman E.Z.
        • Prineas R.J.
        • Go A.S.
        • et al.
        Chronic kidney disease and prevalent atrial fibrillation: the Chronic Renal Insufficiency Cohort (CRIC).
        Am Heart J. 2010; 159: 1102-1107
        • Alonso A.
        • Lopez F.L.
        • Matsushita K.
        • et al.
        Chronic kidney disease is associated with the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study.
        Circulation. 2011; 123: 2946-2953
        • Go A.S.
        • Fang M.C.
        • Udaltsova N.
        • et al.
        Impact of proteinuria and glomerular filtration rate on risk of thromboembolism in atrial fibrillation: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study.
        Circulation. 2009; 119: 1363-1369
        • Wolf P.A.
        • Mitchell J.B.
        • Baker C.S.
        • et al.
        Impact of atrial fibrillation on mortality, stroke, and medical costs.
        Arch Intern Med. 1998; 158: 229-234
        • Piccini J.P.
        • Stevens S.R.
        • Chang Y.
        • et al.
        Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: Validation of the r(2)chads(2) index in the rocket af (rivaroxaban once-daily, oral, direct factor xa inhibition compared with vitamin k antagonism for prevention of stroke and embolism trial in atrial fibrillation) and atria (anticoagulation and risk factors in atrial fibrillation) study cohorts.
        Circulation. 2013; 127: 224-232
        • Fang M.C.
        • Go A.S.
        • Chang Y.
        • et al.
        Comparison of risk stratification schemes to predict thromboembolism in people with nonvalvular atrial fibrillation.
        J Am Coll Cardiol. 2008; 51: 810-815
        • Banerjee A.
        • Fauchier L.
        • Vourc'h P.
        • et al.
        Renal impairment and ischemic stroke risk assessment in patients with atrial fibrillation.
        J Am Coll Cardiol. 2013; 61: 2080-2087
        • Roldan V.
        • Marin F.
        • Manzano-Fernandez S.
        • et al.
        Does chronic kidney disease improve the predictive value of the CHADS2 and CHA2DS2-VASc stroke stratification risk scores for atrial fibrillation?.
        J Thromb Haemost. 2013; 109: 956-960
        • Apostolakis S.
        • Guo Y.
        • Lane D.A.
        • Buller H.
        • Lip G.Y.
        Renal function and outcomes in anticoagulated patients with non-valvular atrial fibrillation: the AMADEUS trial.
        Eur Heart J. 2013; 34: 3572-3579
        • Friberg L.
        • Benson L.
        • Lip G.Y.
        Balancing stroke and bleeding risks in patients with atrial fibrillation and renal failure: the Swedish Atrial Fibrillation Cohort study.
        Eur Heart J. 2015; 36: 297-306
        • Hemmelgarn B.R.
        • Manns B.J.
        • Lloyd A.
        • et al.
        Relation between kidney function, proteinuria, and adverse outcomes.
        JAMA. 2010; 303: 423-429
        • Stevens P.E.
        • Levin A.
        • Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group
        Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline.
        Ann Intern Med. 2013; 158: 825-830
        • Herzog C.A.
        • Asinger R.W.
        • Berger A.K.
        • et al.
        Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO).
        Kidney Int. 2011; 80: 572-586
        • Gage B.F.
        • Waterman A.D.
        • Shannon W.
        • et al.
        Validation of clinical classification schemes for predicting stroke: results from the national registry of atrial fibrillation.
        JAMA. 2001; 285: 2864-2870
        • Lip G.Y.
        • Nieuwlaat R.
        • Pisters R.
        • Lane D.A.
        • Crijns H.J.
        Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The Euro Heart Survey on Atrial Fibrillation.
        Chest. 2010; 137: 263-272
        • Pisters R.
        • Lane D.A.
        • Nieuwlaat R.
        • et al.
        A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey.
        Chest. 2010; 138: 1093-1100
        • Gage B.F.
        • Yan Y.
        • Milligan P.E.
        • et al.
        Clinical classification schemes for predicting hemorrhage: results from the national registry of atrial fibrillation (NRAF).
        Am Heart J. 2006; 151: 713-719
        • Fang M.C.
        • Go A.S.
        • Chang Y.
        • et al.
        A new risk scheme to predict warfarin-associated hemorrhage: the ATRIA (anticoagulation and risk factors in atrial fibrillation) study.
        J Am Coll Cardiol. 2011; 58: 395-401
        • Singer D.E.
        • Chang Y.
        • Borowsky L.H.
        • et al.
        A new risk scheme to predict ischemic stroke and other thromboembolism in atrial fibrillation: the ATRIA study stroke risk score.
        J Am Heart Assoc. 2013; 2: e000250
        • Lip G.Y.
        Stroke and bleeding risk assessment in atrial fibrillation: when, how and why?.
        Eur Heart J. 2013; 34: 1041-1049
        • Keogh C.
        • Wallace E.
        • Dillon C.
        • et al.
        Validation of the CHADS2 clinical prediction rule to predict ischaemic stroke. A systematic review and meta-analysis.
        J Thromb Haemost. 2011; 106: 528-538
        • Olesen J.B.
        • Lip G.Y.
        • Hansen M.L.
        • et al.
        Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation; nationwide cohort study.
        BMJ. 2011; 342: d124
        • Van Staa T.P.
        • Setakis E.
        • Di Tanna G.L.
        • et al.
        A comparison of risk stratification schemes for stroke in 79 884 atrial fibrillation patients in general practice.
        J Thromb Haemost. 2011; 9: 39-48
        • Apostolakis S.
        • Lane D.A.
        • Guo Y.
        • et al.
        Performance of the HEMORR 2HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in patients with atrial fibrillation undergoing anticoagulation.
        J Am Coll Cardiol. 2012; 60: 861-867
        • Donze J.
        • Rodondi N.
        • Waeber G.
        • et al.
        Scores to predict major bleeding risk during oral anticoagulation therapy: a prospective validation study.
        Am J Med. 2012; 125: 1095-1102
        • Olesen J.B.
        • Lip G.Y.
        • Hansen P.R.
        • et al.
        Bleeding risk in ‘real world’ patients with atrial fibrillation: comparison of two established bleeding prediction schemes in a nationwide cohort.
        J Thromb Haemost. 2011; 9: 1460-1467
        • Friberg L.
        • Rosenqvist M.
        • Lip G.Y.
        Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish atrial fibrillation cohort study.
        Eur Heart J. 2012; 33: 1500-1510
        • Kokotailo R.A.
        • Hill M.D.
        Coding of stroke and stroke risk factors using International Classification of Diseases, revisions 9 and 10.
        Stroke. 2005; 36: 1776-1781
        • Jensen P.N.
        • Johnson K.
        • Floyd J.
        • et al.
        A systematic review of validated methods for identifying atrial fibrillation using administrative data.
        Pharmacoepidemiol Drug Saf. 2012; 21: 141-147
        • Quan H.
        • Sundararajan V.
        • Halfon P.
        • et al.
        Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.
        Med Care. 2005; 43: 1130-1139
        • Tonelli M.
        • Wiebe N.
        • Fortin M.
        • et al.
        Methods for identifying 30 chronic conditions: application to administrative data.
        BMC Med Inform Decis Mak. 2015; 15: 31
        • Gomes T.
        • Mamdani M.M.
        • Holbrook A.M.
        • et al.
        Rates of hemorrhage during warfarin therapy for atrial fibrillation.
        CMAJ. 2013; 185: E121-E127
        • Fine J.P.
        • Gray R.J.
        A proportional hazards model for the subdistribution of a competing risk.
        J Am Stat Assoc. 1999; 94: 496-509
        • Sullivan L.M.
        • Massaro J.M.
        • D'Agostino RB Sr
        Presentation of multivariate data for clinical use: the Framingham Study risk score functions.
        Stat Med. 2004; 23: 1631-1660
        • Van den Ham H.A.
        • Klungel O.H.
        • Singer D.E.
        • Leufkens H.G.M.
        • van Staa T.P.
        Comparative performance of ATRIA, CHADS2, and CHA2DS2-VASc risk scores predicting stroke in patients with atrial fibrillation. Results from a national primary care database.
        J Am Coll Cardiol. 2015; 66: 1851-1859
        • Cullen M.W.
        • Kim S.
        • Piccini J.P.
        • et al.
        Risks and benefits of anticoagulation in atrial fibrillation. Insights from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) Registry.
        Circ Cardiovasc Qual Outcomes. 2013; 6: 461-469
        • Camm A.J.
        • Savelieva I.
        Stroke risk stratification in patients with atrial fibrillation: Comme Ci, Comme Ça, Plus Ça Change….
        J Am Coll Cardiol. 2015; 66: 1860-1863