Advertisement
Canadian Journal of Cardiology
Basic Research| Volume 33, ISSUE 2, P269-278, February 2017

Biophysical, Molecular, and Pharmacological Characterization of Voltage-Dependent Sodium Channels From Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Published:October 11, 2016DOI:https://doi.org/10.1016/j.cjca.2016.10.001

      Abstract

      Background

      The ability to differentiate patient-specific human induced pluripotent stem cells in cardiac myocytes (hiPSC-CM) offers novel perspectives for cardiovascular research. A number of studies, that reported mainly on current-voltage curves used hiPSC-CM to model voltage-gated Na+ channel (Nav) dysfunction. However, the expression patterns and precise biophysical and pharmacological properties of Nav channels from hiPSC-CM remain unknown. Our objective was to study the characteristics of Nav channels from hiPSC-CM and assess the appropriateness of this novel cell model.

      Methods

      We generated hiPSC-CM using the recently described monolayer-based differentiation protocol.

      Results

      hiPSC-CM expressed cardiac-specific markers, exhibited spontaneous electrical and contractile activities, and expressed distinct Nav channels subtypes. Electrophysiological, pharmacological, and molecular characterizations revealed that, in addition to the main Nav1.5 channel, the neuronal tetrodotoxin (TTX)-sensitive Nav1.7 channel was also significantly expressed in hiPSC-CM. Most of the Na+ currents were resistant to TTX block. Therapeutic concentrations of lidocaine, a class I antiarrhythmic drug, also inhibited Na+ currents in a use-dependent manner. Nav1.5 and Nav1.7 expression and maturation patterns of hiPSC-CM and native human cardiac tissues appeared to be similar. The 4 Navβ regulatory subunits were expressed in hiPSC-CM, with β3 being the preponderant subtype.

      Conclusions

      The findings indicated that hiPSC-CM robustly express Nav1.5 channels, which exhibited molecular and pharmacological properties similar to those in native cardiac tissues. Interestingly, neuronal Nav1.7 channels were also expressed in hiPSC-CM and are likely to be responsible for the TTX-sensitive Nav current.

      Résumé

      Introduction

      La capacite de différenciation cardiomyocytaire (hiPSC-CM) des cellules souches pluripotentes induites humaines offre de nouvelles perspectives pour la recherche sur les maladies cardiovasculaires. Un certain nombre d’études qui ont principalement rendu compte des courbes courant-tension utilisaient les hiPSC-CM pour modéliser le dysfonctionnement des canaux sodiques sensibles à la tension (Nav pour voltage-gated Na+ channel). Toutefois, on ignore les profils d’expression et les propriétés biophysiques et pharmacologiques précises des canaux Nav exprimés dans les hiPSC-CM. Notre objectif était donc d'étudier les caractéristiques des canaux Nav exprimés dans les hiPSC-CM et d’évaluer la pertinence de ce nouveau modèle de cellules.

      Méthodes

      Nous avons généré des hiPSC-CM en utilisant le protocole de différenciation en monocouche récemment décrit.

      Résultats

      Les hiPSC-CM experiment des marqueurs cardiaques spécifiques, montrent une activité électrique et contractile et experiment des sous-types distincts de canaux Nav. Les caractérisations électrophysiologiques, pharmacologiques et moléculaires ont révélé qu’en plus du canal principal Nav1.5 le canal neuronal Nav1.7 sensible à la tétrodotoxine (TTX) a est également exprimé dans les hiPSC-CM. La plupart des courants Na+ ont été résistants à la TTX. Les concentrations thérapeutiques de lidocaïne, un médicament antiarythmique de classe I, ont également inhibé les courants Nav en fonction de la fréquence de stimulation. Les profils d’expression et de maturation de Nav1.5 et Nav1.7 des hiPSC-CM et des tissus cardiaques humains à l’état natif ont semblé similaires. Les 4 sous-unités régulatrices Navβ ont été exprimées dans les hiPSC-CM, parmi lesquelles β3 a été le sous-type prépondérant.

      Conclusions

      Les conclusions ont indiqué que les hiPSC-CM expriment fortement les canaux Nav1.5, lesquels montraient des propriétés moléculaires et pharmacologiques similaires à celles des tissus cardiaques à l’état natif. Il est intéressant de noter que les canaux neuronaux Nav1.7 sont également exprimés dans les hiPSC-CM et qu’ils sont probablement responsables du courant Nav sensible à la TTX.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • et al.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Burridge P.W.
        • Matsa E.
        • Shukla P.
        • et al.
        Chemically defined generation of human cardiomyocytes.
        Nat Methods. 2014; 11: 855-860
        • Lian X.
        • Zhang J.
        • Azarin S.M.
        • et al.
        Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions.
        Nat Protoc. 2013; 8: 162-175
        • Catterall W.A.
        • Goldin A.L.
        • Waxman S.G.
        International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels.
        Pharmacol Rev. 2005; 57: 397-409
        • Chahine M.
        • Chen L.Q.
        • Barchi R.L.
        • Kallen R.G.
        • Horn R.
        Lidocaine block of human heart sodium channels expressed in Xenopus oocytes.
        J Mol Cell Cardiol. 1992; 24: 1231-1236
        • Gellens M.E.
        • George Jr., A.L.
        • Chen L.Q.
        • et al.
        Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel.
        Proc Natl Acad Sci U S A. 1992; 89: 554-558
        • Zimmer T.
        • Haufe V.
        • Blechschmidt S.
        Voltage-gated sodium channels in the mammalian heart.
        Glob Cardiol Sci Pract. 2014; 2014: 449-463
        • Hoekstra M.
        • Mummery C.L.
        • Wilde A.A.
        • Bezzina C.R.
        • Verkerk A.O.
        Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias.
        Front Physiol. 2012; 3: 346
        • Itzhaki I.
        • Maizels L.
        • Huber I.
        • et al.
        Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells.
        J Am Coll Cardiol. 2012; 60: 990-1000
        • Itzhaki I.
        • Maizels L.
        • Huber I.
        • et al.
        Modelling the long QT syndrome with induced pluripotent stem cells.
        Nature. 2011; 471: 225-229
        • Kamdar F.
        • Kamdar A.K.
        • Koyano-Nakagawa N.
        • Garry M.G.
        • Garry D.J.
        Cardiomyopathy in a dish: using human inducible pluripotent stem cells to model inherited cardiomyopathies.
        J Card Fail. 2015; 21: 761-770
        • Ma D.
        • Wei H.
        • Lu J.
        • et al.
        Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy.
        Eur Heart J. 2013; 34: 1122-1133
        • Ma D.
        • Wei H.
        • Zhao Y.
        • et al.
        Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells.
        Int J Cardiol. 2013; 168: 5277-5286
        • Moretti A.
        • Bellin M.
        • Welling A.
        • et al.
        Patient-specific induced pluripotent stem-cell models for long-QT syndrome.
        N Engl J Med. 2010; 363: 1397-1409
        • Siu C.W.
        • Lee Y.K.
        • Ho J.C.
        • et al.
        Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells.
        Aging. 2012; 4: 803-822
        • Sun N.
        • Yazawa M.
        • Liu J.
        • et al.
        Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.
        Sci Transl Med. 2012; 4: 130ra147
        • Malan D.
        • Zhang M.
        • Stallmeyer B.
        • et al.
        Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction.
        Basic Res Cardiol. 2016; 111: 14
        • Fermini B.
        • Hancox J.C.
        • Abi-Gerges N.
        • et al.
        A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm.
        J Biomol Screen. 2016; 21: 1-11
        • Ma J.
        • Guo L.
        • Fiene S.J.
        • et al.
        High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents.
        Am J Physiol Heart Circ Physiol. 2011; 301: H2006-H2017
        • Sheng X.
        • Reppel M.
        • Nguemo F.
        • et al.
        Human pluripotent stem cell-derived cardiomyocytes: response to TTX and lidocain reveals strong cell to cell variability.
        PLoS One. 2012; 7: e45963
        • Terrenoire C.
        • Wang K.
        • Tung K.W.
        • et al.
        Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics.
        J Gen Physiol. 2013; 141: 61-72
        • Bean B.P.
        • Cohen C.J.
        • Tsien R.W.
        Lidocaine block of cardiac sodium channels.
        J Gen Physiol. 1983; 81: 613-642
        • Fatima A.
        • Kaifeng S.
        • Dittmann S.
        • et al.
        The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients.
        PLoS One. 2013; 8: e83005
        • Mercier A.
        • Clement R.
        • Harnois T.
        • et al.
        Nav1.5 channels can reach the plasma membrane through distinct N-glycosylation states.
        Biochim Biophys Acta. 2015; 1850: 1215-1223
        • Laedermann C.J.
        • Syam N.
        • Pertin M.
        • Decosterd I.
        • Abriel H.
        Beta1- and beta3- voltage-gated sodium channel subunits modulate cell surface expression and glycosylation of Nav1.7 in HEK293 cells.
        Front Cell Neurosci. 2013; 7: 137
        • Amin A.S.
        • Asghari-Roodsari A.
        • Tan H.L.
        Cardiac sodium channelopathies.
        Pflugers Arch. 2010; 460: 223-237
        • Gosselin-Badaroudine P.
        • Keller D.I.
        • Huang H.
        • et al.
        A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype.
        PLoS One. 2012; 7: e38331
        • Moreau A.
        • Gosselin-Badaroudine P.
        • Chahine M.
        Biophysics, pathophysiology, and pharmacology of ion channel gating pores.
        Front Pharmacol. 2014; 5: 53
        • Moreau A.
        • Gosselin-Badaroudine P.
        • Delemotte L.
        • Klein M.L.
        • Chahine M.
        Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy.
        J Gen Physiol. 2015; 145: 93-106
        • Moreau A.
        • Keller D.I.
        • Huang H.
        • et al.
        Mexiletine differentially restores the trafficking defects caused by two brugada syndrome mutations.
        Front Pharmacol. 2012; 3: 62
        • Moreau A.
        • Krahn A.D.
        • Gosselin-Badaroudine P.
        • et al.
        Sodium overload due to a persistent current that attenuates the arrhythmogenic potential of a novel LQT3 mutation.
        Front Pharmacol. 2013; 4: 126
        • Ko S.H.
        • Lenkowski P.W.
        • Lee H.C.
        • Mounsey J.P.
        • Patel M.K.
        Modulation of Na(v)1.5 by beta1– and beta3-subunit co-expression in mammalian cells.
        Pflugers Arch. 2005; 449: 403-412
        • Furukawa T.
        • Koumi S.
        • Sakakibara Y.
        • et al.
        An analysis of lidocaine block of sodium current in isolated human atrial and ventricular myocytes.
        J Mol Cell Cardiol. 1995; 27: 831-846
        • Gaborit N.
        • Le Bouter S.
        • Szuts V.
        • et al.
        Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart.
        J Physiol. 2007; 582: 675-693
        • Haufe V.
        • Chamberland C.
        • Dumaine R.
        The promiscuous nature of the cardiac sodium current.
        J Mol Cell Cardiol. 2007; 42: 469-477
        • Marionneau C.
        • Abriel H.
        Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications.
        J Mol Cell Cardiol. 2015; 82: 36-47
        • Ufret-Vincenty C.A.
        • Baro D.J.
        • Lederer W.J.
        • et al.
        Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure.
        J Biol Chem. 2001; 276: 28197-28203
        • Kawamura T.
        • Miyagawa S.
        • Fukushima S.
        • et al.
        Structural changes in N-glycans on induced pluripotent stem cells differentiating toward cardiomyocytes.
        Stem Cells Transl Med. 2015; 4: 1258-1264