Advertisement
Canadian Journal of Cardiology

New Drugs for Atherosclerosis

Published:October 17, 2016DOI:https://doi.org/10.1016/j.cjca.2016.09.010

      Abstract

      Atherosclerosis, the underlying process that ultimately leads to clinical cardiovascular disease (CVD), is caused by the multifactorial interaction of various conditions, and dyslipidemia is widely acknowledged as 1 of the crucial risk factors in this process. Statin drugs have been shown to decrease low-density lipoprotein cholesterol and CVD morbidity as well as mortality and are therefore pivotal in CVD prevention. Despite the use of statin drugs, CVD remains a leading cause of mortality worldwide, which suggests that additional lipid-lowering therapies are warranted. Several novel therapeutic agents, which are described in this review, are now well on their way in their respective development paths and might revolutionize anti-atherosclerotic drug therapy.

      Résumé

      L’athérosclérose, le processus sous-jacent qui mène ultimement à la maladie cardiovasculaire (MCV), est causée par l’interaction multifactorielle de diverses affections, et la dyslipidémie est largement reconnue comme l’un des facteurs de risque cruciaux dans le processus. Il a été démontré que les médicaments de la famille des statines diminuent le cholestérol à lipoprotéines de faible densité ainsi que la morbidité et la mortalité liées à la MCV et qu’ils sont par conséquent essentiels dans la prévention de la MCV. En dépit de l’utilisation des médicaments de la famille des statines, la MCV demeure l’une des causes principales de mortalité dans le monde entier, ce qui suggère que des traitements hypolipémiants additionnels sont justifiés. Plusieurs nouveaux agents thérapeutiques décrits dans la présente revue sont en bonne voie dans leur processus d’élaboration respectif et pourraient révolutionner le traitement médicamenteux de l’athérosclérose.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Boekholdt S.M.
        • Hovingh G.K.
        • Mora S.
        • et al.
        Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials.
        J Am Coll Cardiol. 2014; 64: 485-494
        • Ray K.K.
        • Kastelein J.J.
        • Boekholdt S.M.
        • et al.
        The ACC/AHA 2013 guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: the good the bad and the uncertain: a comparison with ESC/EAS guidelines for the management of dyslipidaemias 2011.
        Eur Heart J. 2014; 35: 960-968
        • Murphy S.A.
        • Cannon C.P.
        • Blazing M.A.
        • et al.
        Reduction in total cardiovascular events with ezetimibe/simvastatin post-acute coronary syndrome: The IMPROVE-IT trial.
        J Am Coll Cardiol. 2016; 67: 353-361
        • Ridker P.M.
        LDL cholesterol: controversies and future therapeutic directions.
        Lancet. 2014; 384: 607-617
        • Thompson P.D.
        • Panza G.
        • Zaleski A.
        • Taylor B.
        Statin-associated side effects.
        J Am Coll Cardiol. 2016; 67: 2395-2410
        • Lambert G.
        • Sjouke B.
        • Choque B.
        • Kastelein J.J.P.
        • Hovingh G.K.
        The PCSK9 decade.
        J Lipid Res. 2012; 53: 2515-2524
        • Abifadel M.
        • Elbitar S.
        • El Khoury P.
        • et al.
        Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs.
        Curr Atheroscler Rep. 2014; 16: 439
        • Navarese E.P.
        • Kolodziejczak M.
        • Schulze V.
        • et al.
        Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis.
        Ann Intern Med. 2015; 163: 40-51
        • Zhang X.-L.
        • Zhu Q.-Q.
        • Zhu L.
        • et al.
        Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials.
        BMC Med. 2015; 13: 123
        • Raal F.J.
        • Honarpour N.
        • Blom D.J.
        • et al.
        Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial.
        Lancet. 2015; 385: 341-350
        • Robinson J.G.
        • Farnier M.
        • Krempf M.
        • et al.
        Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.
        N Engl J Med. 2015; 372: 1489-1499
        • Sabatine M.S.
        • Giugliano R.P.
        • Wiviott S.D.
        • et al.
        Efficacy and safety of evolocumab in reducing lipids and cardiovascular events.
        N Engl J Med. 2015; 372: 1500-1509
        • Fitzgerald K.
        • Frank-Kamenetsky M.
        • Shulga-Morskaya S.
        • et al.
        Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial.
        Lancet. 2014; 383: 60-68
        • Kazi D.S.
        • Moran A.E.
        • Coxson P.G.
        • et al.
        Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease.
        JAMA. 2016; 316: 743
        • Akdim F.
        • Visser M.E.
        • Tribble D.L.
        • et al.
        Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia.
        Am J Cardiol. 2010; 105: 1413-1419
        • Raal F.J.
        • Santos R.D.
        • Blom D.J.
        • et al.
        Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial.
        Lancet. 2010; 375: 998-1006
        • Li N.
        • Li Q.
        • Tian X.Q.
        • Qian H.Y.
        • Yang Y.J.
        Mipomersen is a promising therapy in the management of hypercholesterolemia: a meta-analysis of randomized controlled trials.
        Am J Cardiovasc Drugs. 2014; 14: 367-376
        • Visser M.E.
        • Wagener G.
        • Baker B.F.
        • et al.
        Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial.
        Eur Heart J. 2012; 33: 1142-1149
        • Stein E.A.
        • Dufour R.
        • Gagne C.
        • et al.
        Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease.
        Circulation. 2012; 126: 2283-2292
        • Panta R.
        • Dahal K.
        • Kunwar S.
        Efficacy and safety of mipomersen in treatment of dyslipidemia: a meta-analysis of randomized controlled trials.
        J Clin Lipidol. 2015; 9: 217-225
        • Bays H.E.
        • McKenney J.M.
        • Dujovne C.A.
        • et al.
        Effectiveness and tolerability of a new lipid-altering agent, gemcabene, in patients with low levels of high-density lipoprotein cholesterol.
        Am J Cardiol. 2003; 92: 538-543
        • Sirtori C.R.
        • Pavanello C.
        • Bertolini S.
        Microsomal transfer protein (MTP) inhibition—a novel approach to the treatment of homozygous hypercholesterolemia.
        Ann Med. 2014; 46: 464-474
        • Visser M.E.
        • Akdim F.
        • Tribble D.L.
        • et al.
        Effect of apolipoprotein-B synthesis inhibition on liver triglyceride content in patients with familial hypercholesterolemia.
        J Lipid Res. 2010; 51: 1057-1062
        • Cuchel M.
        • Meagher E.A.
        • du Toit Theron H.
        • et al.
        Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study.
        Lancet. 2013; 381: 40-46
        • Blom D.J.
        • Fayad Z.A.
        • Kastelein J.J.P.
        • et al.
        LOWER, a registry of lomitapide-treated patients with homozygous familial hypercholesterolemia: rationale and design.
        J Clin Lipidol. 2016; 10: 273-282
        • Kosmas C.E.
        • Frishman W.H.
        New and emerging LDL cholesterol-lowering drugs.
        Am J Ther. 2015; 22: 234-241
        • Thompson P.D.
        • MacDougall D.E.
        • Newton R.S.
        • et al.
        Treatment with ETC-1002 alone and in combination with ezetimibe lowers LDL cholesterol in patients with hypercholesterolemia with or without statin intolerance.
        J Clin Lipidol. 2016; 10: 556-567
        • Glomset J.A.
        • Janssen E.T.
        • Kennedy R.
        • Dobbins J.
        Role of plasma lecithin:cholesterol acyltransferase in the metabolism of high density lipoproteins.
        J Lipid Res. 1966; 7: 638-648
        • Voight B.F.
        • Peloso G.M.
        • Orho-Melander M.
        • et al.
        Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study.
        Lancet. 2012; 380: 572-580
        • Schwartz G.G.
        • Olsson A.G.
        • Abt M.
        • et al.
        Effects of dalcetrapib in patients with a recent acute coronary syndrome.
        N Engl J Med. 2012; 367: 2089-2099
        • Keene D.
        • Price C.
        • Shun-Shin M.J.
        • Francis D.P.
        Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients.
        BMJ. 2014; 349: g4379
        • Rader D.J.
        New therapeutic approaches to the treatment of dyslipidemia.
        Cell Metab. 2016; 23: 405-412
        • Di Bartolo B.
        • Takata K.
        • Duong M.
        • Nicholls S.J.
        CETP inhibition in CVD prevention: an actual appraisal.
        Curr Cardiol Rep. 2016; 18: 43
        • Barter P.J.
        • Caulfield M.
        • Eriksson M.
        • et al.
        Effects of torcetrapib in patients at high risk for coronary events.
        N Engl J Med. 2007; 357: 2109-2122
        • Nicholls S.J.
        • Lincoff A.M.
        • Barter P.J.
        • et al.
        Assessment of the clinical effects of cholesteryl ester transfer protein inhibition with evacetrapib in patients at high-risk for vascular outcomes: rationale and design of the ACCELERATE trial.
        Am Heart J. 2015; 170: 1061-1069
        • Kastelein J.J.P.
        • Besseling J.
        • Shah S.
        • et al.
        Anacetrapib as lipid-modifying therapy in patients with heterozygous familial hypercholesterolaemia (REALIZE): a randomised, double-blind, placebo-controlled, phase 3 study.
        Lancet. 2015; 385: 2153-2161
        • Gotto A.M.
        • Cannon C.P.
        • Li X.S.
        • et al.
        Evaluation of lipids, drug concentration, and safety parameters following cessation of treatment with the cholesteryl ester transfer protein inhibitor anacetrapib in patients with or at high risk for coronary heart disease.
        Am J Cardiol. 2014; 113: 76-83
        • Hovingh G.K.
        • Kastelein J.J.P.
        • van Deventer S.J.H.
        • et al.
        Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial.
        Lancet. 2015; 386: 452-460
        • Nissen S.E.
        • Tsunoda T.
        • Tuzcu E.M.
        • et al.
        Effect of recombinant apoa-I Milano on coronary atherosclerosis in patients with acute coronary syndromes.
        JAMA. 2003; 290: 2292
        • Tardif J.-C.
        • Ballantyne C.M.
        • Barter P.
        • et al.
        Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial.
        Eur Heart J. 2014; 35: 3277-3286
        • Kataoka Y.
        • Andrews J.
        • Duong M.
        • et al.
        Greater regression of coronary atherosclerosis with the pre-beta high-density lipoprotein mimetic CER-001 in patients with more extensive plaque burden [abstract 12156].
        Circulation. 2015; 132: A12156
        • Hovingh G.K.
        • Smits L.P.
        • Stefanutti C.
        • et al.
        The effect of an apolipoprotein A-I-containing high-density lipoprotein-mimetic particle (CER-001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: The Modifying Orphan Disease Evaluation (MODE) study.
        Am Heart J. 2015; 169: 736-742.e1
        • Gibson C.M.
        • Korjian S.
        • Tricoci P.
        • et al.
        Rationale and design of Apo-I Event Reduction in Ischemic Syndromes I (AEGIS-I): A phase 2b, randomized, placebo-controlled, dose-ranging trial to investigate the safety and tolerability of CSL112, a reconstituted, infusible, human apoA-I, after acute myo.
        Am Heart J. 2016; 180: 22-28
        • Kastelein J.J.
        • Ross C.J.
        • Hayden M.R.
        From mutation identification to therapy: discovery and origins of the first approved gene therapy in the Western world.
        Hum Gene Ther. 2013; 24: 472-478
        • Gaudet D.
        • Methot J.
        • Kastelein J.
        Gene therapy for lipoprotein lipase deficiency.
        Curr Opin Lipidol. 2012; 23: 310-320
        • Burnett J.R.
        • Hooper A.J.
        Alipogene tiparvovec, an adeno-associated virus encoding the Ser(447)X variant of the human lipoprotein lipase gene for the treatment of patients with lipoprotein lipase deficiency.
        Curr Opin Mol Ther. 2009; 11: 681-691
        • Gaudet D.
        • Stroes E.S.
        • Méthot J.
        • et al.
        Long-term retrospective analysis of gene therapy with alipogene tiparvovec and its effect on lipoprotein lipase deficiency-induced pancreatitis.
        Hum Gene Ther. 2016; 27: 916-925
        • Holmes M.V.
        • Asselbergs F.W.
        • Palmer T.M.
        • et al.
        Mendelian randomization of blood lipids for coronary heart disease.
        Eur Heart J. 2015; 36: 539-550
        • Somanathan S.
        • Jacobs F.
        • Wang Q.
        • et al.
        AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia.
        Circ Res. 2014; 115: 591-599
        • Crosby J.
        • Peloso G.M.
        • et al.
        • TG and HDL Working Group of the Exome Sequencing Project
        • National Heart, Lung, and Blood Institute
        Loss-of-function mutations in APOC3, triglycerides, and coronary disease.
        N Engl J Med. 2014; 371: 22-31
        • Graham M.J.
        • Lee R.G.
        • Bell T.A.
        • et al.
        Antisense oligonucleotide inhibition of apolipoprotein C-III Reduces plasma triglycerides in rodents, nonhuman primates, and humans.
        Circ Res. 2013; 112: 1479-1490
        • Gaudet D.
        • Brisson D.
        • Tremblay K.
        • et al.
        Targeting APOC3 in the familial chylomicronemia syndrome.
        N Engl J Med. 2014; 371: 2200-2206
        • Gaudet D.
        • Alexander V.J.
        • Baker B.F.
        • et al.
        Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia.
        N Engl J Med. 2015; 373: 438-447
        • van Capelleveen J.C.
        • van der Valk F.M.
        • Stroes E.S.
        Current therapies for lowering lipoprotein(a).
        J Lipid Res. 2016; 57: 1612-1618
        • Erqou S.
        • Kaptoge S.
        • et al.
        • Emerging Risk Factors Collaboration
        Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality.
        JAMA. 2009; 302: 412-423
        • Tsimikas S.
        • Viney N.J.
        • Hughes S.G.
        • et al.
        Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study.
        Lancet. 2015; 386: 1472-1483
        • Viney N.J.
        • van Capelleveen J.C.
        • Geary R.S.
        • et al.
        Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials.
        Lancet. 2016; 388: 2239-2253