Abstract
From studies of rare families to genome-wide associations in populations, understanding
of human genetics has accelerated the search for new drug targets for the prevention
of atherosclerotic cardiovascular disease. DNA sequencing and genome-wide analyses
of DNA markers have illuminated rare as well as common variants in genes that regulate
lipids and ultimately atherosclerosis risk. A recent innovative approach called Mendelian
randomization can endorse specific genes and variants as causative not just for lipid
disturbances, but also for clinical cardiovascular end points. This knowledge helps
prioritize the candidate genes and proteins in the drug development pipeline. In this
review, we focus on dyslipidemia drug targets traceable to human genetic studies,
including statins and ezetimibe, as well as promising new classes such as inhibitors
of proprotein convertase subtilisin kexin 9, apolipoprotein B, microsomal triglyceride
transfer protein, cholesteryl ester transfer protein, angiopoietin-like proteins types
3 and 4 and apolipoprotein C-III. Several of these new agents have attained or are
closing in on “prime-time readiness” for clinical use in specific situations.
Résumé
Qu’il s’agisse d’études d’association pangénomique menées dans des populations ou
portant sur des caractéristiques génétiques familiales rares, la compréhension de
la génétique humaine a permis d’accélérer le développement de nouvelles cibles pharmacothérapeutiques
en vue de prévenir la maladie cardiovasculaire athérosclérotique. Le séquençage de
l’ADN et les analyses pangénomiques des marqueurs de l’ADN ont permis de mettre en
relief tant les variantes génétiques courantes que les variantes génétiques rares
de la régulation des lipides et, en fin de compte, du risque d’athérosclérose. Une
nouvelle approche innovante appelée répartition aléatoire mendélienne permet non seulement
d’associer certains gènes et leurs variantes à des perturbations lipidiques, mais
aussi à des issues cliniques cardiovasculaires. De telles données permettent de sélectionner
les gènes et les protéines qui feront l’objet de recherches pharmaceutiques. Nous
faisons un tour d’horizon des médicaments antidyslipidémiques créés à la suite de
recherches génétiques, notamment les statines et l’ézétimibe de même que de nouvelles
classes de médicaments très prometteuses comme divers inhibiteurs sélectifs, soit
les inhibiteurs de la proprotéine convertase subtilisine/kexine type 9, de l’apolipoprotéine
B, de la protéine microsomale de transfert des triglycérides, de la protéine de transfert
des esters de cholestérol, des protéines 3 et 4 de type angiopoïétine et de l’apolipoprotéine
C-III. Un grand nombre de ces agents sont désormais prêts, ou presque, pour une utilisation
clinique dans des circonstances bien précises.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of CardiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Validating therapeutic targets through human genetics.Nat Rev Drug Discov. 2013; 12: 581-594
- Novel therapies for severe dyslipidemia originating from human genetics.Curr Opin Lipidol. 2016; 27: 112-124
- Genetics 100 for cardiologists: basics of genome-wide association studies.Can J Cardiol. 2013; 29: 10-17
- Genetics 101 for cardiologists: rare genetic variants and monogenic cardiovascular disease.Can J Cardiol. 2013; 29: 18-22
- A century of cholesterol and coronaries: from plaques to genes to statins.Cell. 2015; 161: 161-172
- The discovery and development of HMG-CoA reductase inhibitors.Atheroscler Suppl. 2004; 5: 67-80
- Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society.Eur Heart J. 2013; 34: 3478-3490
- 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult.Can J Cardiol. 2013; 29: 151-167
- Mutations in PCSK9 cause autosomal dominant hypercholesterolemia.Nat Genet. 2003; 34: 154-156
- PCSK9: a key modulator of cardiovascular health.Circ Res. 2014; 114: 1022-1036
- PCSK9 inhibition: current concepts and lessons from human genetics.Curr Atheroscler Rep. 2015; 17: 487
- Sequence variations in PCSK9, low LDL, and protection against coronary heart disease.N Engl J Med. 2006; 354: 1264-1272
- PCSK9: regulation and target for drug development for dyslipidemia.Annu Rev Pharmacol Toxicol. 2017; 57: 223-244
- Current phase II proprotein convertase subtilisin/kexin 9 inhibitor therapies for dyslipidemia.Expert Opin Investig Drugs. 2013; 22: 1411-1423
- Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.N Engl J Med. 2015; 372: 1489-1499
- Efficacy and safety of evolocumab in reducing lipids and cardiovascular events.N Engl J Med. 2015; 372: 1500-1509
- Ezetimibe: rescued by randomization (clinical and Mendelian).Arterioscler Thromb Vasc Biol. 2015; 35: e13-e15
- The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial.Lancet. 2011; 377: 2181-2192
- Ezetimibe added to statin therapy after acute coronary syndromes.N Engl J Med. 2015; 372: 2387-2397
- Inactivating mutations in NPC1L1 and protection from coronary heart disease.N Engl J Med. 2014; 371: 2072-2078
- Nonstatin low-density lipoprotein-lowering therapy and cardiovascular risk reduction - statement from ATVB Council.Arterioscler Thromb Vasc Biol. 2015; 35: 2269-2280
- Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management.J Inherit Metab Dis. 2014; 37: 333-339
- Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society.Eur Heart J. 2014; 35: 2146-2157
- Canadian Cardiovascular Society position statement on familial hypercholesterolemia.Can J Cardiol. 2014; 30: 1471-1481
- Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia.N Engl J Med. 2007; 356: 148-156
- Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study.Lancet. 2013; 381: 40-46
- Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide.JAMA Intern Med. 2014; 174: 443-447
- Finding the therapeutic sweet spot: using naturally occurring human variants to inform drug design.Circ Cardiovasc Genet. 2015; 8: 637-639
- Clinical utility gene card for: familial hypobetalipoproteinaemia (APOB)--update 2014.Eur J Hum Genet. 2015; 23: 80
- Mipomersen as a potential adjunctive therapy for hypercholesterolemia.Expert Opin Pharmacother. 2010; 11: 2569-2572
- Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial.Lancet. 2010; 375: 998-1006
- Efficacy and safety of mipomersen in treatment of dyslipidemia: a meta-analysis of randomized controlled trials.J Clin Lipidol. 2015; 9: 217-225
- Trial Watch: antisenses working overtime in lipids.Nat Rev Endocrinol. 2015; 11: 574-576
- Is raising HDL a futile strategy for atheroprotection?.Nat Rev Drug Discov. 2008; 7: 143-155
- High density lipoproteins: measurement techniques and potential biomarkers of cardiovascular risk.BBA Clin. 2015; 3: 175-188
- Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation.N Engl J Med. 1990; 323: 1234-1238
- Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels.J Clin Invest. 1996; 97: 2917-2923
- Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects.J Am Coll Cardiol. 2012; 60: 2041-2048
- Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study.Lancet. 2012; 380: 572-580
- Association of cholesteryl ester transfer protein (CETP) gene polymorphism, high density lipoprotein cholesterol and risk of coronary artery disease: a meta-analysis using a Mendelian randomization approach.BMC Med Genet. 2014; 15: 118
- Effects of torcetrapib in patients at high risk for coronary events.N Engl J Med. 2007; 357: 2109-2122
- Effects of dalcetrapib in patients with a recent acute coronary syndrome.N Engl J Med. 2012; 367: 2089-2099
- Assessment of the clinical effects of cholesteryl ester transfer protein inhibition with evacetrapib in patients at high-risk for vascular outcomes: rationale and design of the ACCELERATE trial.Am Heart J. 2015; 170: 1061-1069
- HDL - is it too big to fail?.Nat Rev Endocrinol. 2013; 9: 308-312
- Cholesteryl ester transfer protein inhibition is not yet dead–pro.Arterioscler Thromb Vasc Biol. 2016; 36: 439-441
- Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3.Circ Cardiovasc Genet. 2012; 5: 42-50
- Multidimensional regulation of lipoprotein lipase: impact on biochemical and cardiovascular phenotypes.J Lipid Res. 2016; 57: 1601-1607
- Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans.J Clin Invest. 2009; 119: 70-79
Gaudet D, Gipe DA, Khoury É et al. Safety and efficacy of evinacumab, a monoclonal antibody to ANGPTL3, in patients with homozygous familial hypercholesterolemia: a single arm, open-label, proof of concept study. Presented at the 84th Congress, European Atherosclerosis Society, Innsbruck Austria, June 1, 2016.
- Apolipoprotein C-III: going back to the future for a lipid drug target.Circ Res. 2013; 112: 1405-1408
- A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection.Science. 2008; 322: 1702-1705
- Loss-of-function mutations in APOC3 and risk of ischemic vascular disease.N Engl J Med. 2014; 371: 32-41
- Loss-of-function mutations in APOC3, triglycerides, and coronary disease.N Engl J Med. 2014; 371: 22-31
- Targeting APOC3 in the familial chylomicronemia syndrome.N Engl J Med. 2014; 371: 2200-2206
- Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia.N Engl J Med. 2015; 373: 438-447
- AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia.Circ Res. 2014; 115: 591-599
- Chylomicronaemia–current diagnosis and future therapies.Nat Rev Endocrinol. 2015; 11: 352-362
- Alipogene tiparvovec, an adeno-associated virus encoding the Ser(447)X variant of the human lipoprotein lipase gene for the treatment of patients with lipoprotein lipase deficiency.Curr Opin Mol Ther. 2009; 11: 681-691
- Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum.Mol Genet Metab. 2008; 93: 282-294
- A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency.N Engl J Med. 2015; 373: 1010-1020
- Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease.N Engl J Med. 2016; 374: 1134-1144
- Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease.Nat Genet. 2016; 48: 634-639
- Inactivating variants in ANGPTL4 and risk of coronary artery disease.N Engl J Med. 2016; 374: 1123-1133
- Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice.Proc Natl Acad Sci U S A. 2007; 104: 11766-11771
- Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.Nature. 2015; 518: 102-106
- Apolipoprotein A-V gene therapy for disease prevention/treatment: a critical analysis.J Biomed Res. 2016; 30: 88-93
- Targeted next-generation sequencing in monogenic dyslipidemias.Curr Opin Lipidol. 2015; 26: 103-113
- Biological, clinical and population relevance of 95 loci for blood lipids.Nature. 2010; 466: 707-713
- Discovery and refinement of loci associated with lipid levels.Nat Genet. 2013; 45: 1274-1283
- Genetics of coronary artery disease.Circ Res. 2016; 118: 564-578
- Developing medicines that mimic the natural successes of the human genome: lessons from NPC1L1, HMGCR, PCSK9, APOC3, and CETP.J Am Coll Cardiol. 2015; 65: 1562-1566
- 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult.Can J Cardiol. 2016; 32: 1263-1282
Article info
Publication history
Published online: November 10, 2016
Accepted:
November 7,
2016
Received:
September 19,
2016
Footnotes
See page 340 for disclosure information.
Identification
Copyright
© 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.