Advertisement
Canadian Journal of Cardiology

Validity of Commercial Activity Trackers in Children With Congenital Heart Disease

Published:December 17, 2016DOI:https://doi.org/10.1016/j.cjca.2016.11.024

      Abstract

      Background

      Increasing physical activity levels is a high priority to optimize long-term health in children with congenital heart disease (CHD). Commercial activity trackers have been validated in adults and are increasingly used to measure and promote physical activity in pediatric populations, but they have not been validated in children.

      Methods

      In 30 children with CHD aged 10-18 years, we assessed the validity of physical activity form the wrist-based Fitbit Charge HR (Fitbit, San Francisco, CA) against hip-based ActiGraph (ActiGraph LLC, Pensacola, FL) accelerometers under free living conditions for 7 days. We assessed the association between devices using intraclass correlation coefficients (ICCs) and Bland-Altman plots. Receiver operating curves were used to identify Fitbit step cut points.

      Results

      There was a strong association between the 2 devices for daily steps across 138 analyzed person-days (ICC = 0.855; P < 0.001), but poorer agreement for time spent in physical activity intensities (ICCs < 0.7). Daily Fitbit steps of ≥ 12,500 identified meeting physical activity guidelines defined as ≥ 60 minutes of moderate-to-vigorous physical activity per day. Fitbit devices recorded more steps than accelerometers (−2242 steps per day, 95% limits of agreement of −7738 to 3253). Between-device differences were greater in boys vs girls. Fitbit devices were worn for longer than accelerometers (−36 minutes per day, 95% limits of agreement, −334 to 261), but overall differences in wear time explained little of the variance in step differences (7%, P = 0.048).

      Conclusions

      Commercial activity trackers provide opportunities to remotely monitor physical activity in children with CHD, but absolute values might differ from accelerometers. These findings are important because of the increasing emphasis on physical activity promotion and monitoring in children with cardiovascular risk factors.

      Résumé

      Introduction

      Augmenter l'activité physique des enfants atteints d'une cardiopathie congénitale (CG) constitue une priorité de premier ordre pour optimiser l’état de santé de ces enfants à long terme. L'utilisation des moniteurs d'activité physique offerts sur le marché a été validée chez les adultes, et l'on y a de plus en plus recours pour mesurer et promouvoir l'activité physique chez les jeunes patients, sans pour autant l'avoir validée chez cette population.

      Méthodes

      Nous avons donc comparé la validité, sur le plan de l'activité physique, de deux moniteurs sur le marché, soit le Fitbit Charge HR (Fitbit, San Francisco, CA), porté au poignet, et l'accéléromètre ActiGraph (ActiGraph LLC, Pensacola, FL), porté à la hanche, auprès de 30 enfants de 10 à 18 ans atteints d'une CG qui ont été laissés libres de choisir leurs activités pendant sept jours. Nous avons évalué le rapport entre ces deux moniteurs à l'aide de coefficients de corrélation intraclasse (CCI) et de graphiques de Bland-Altman. Les courbes d'efficacité du récepteur ont été utilisées pour déterminer les points de coupure quant au nombre de pas avec le Fitbit.

      Résultats

      Il y avait une forte corrélation entre les deux dispositifs en ce qui avait trait aux pas quotidiens comptés pendant les 138 jours-personnes analysés (CCI = 0,855; p < 0,001), mais une corrélation beaucoup moins grande entre les appareils quant au temps consacré aux activités physiques (CCI < 0,7). Avec le dispositif Fitbit, ≥ 12 500 pas par jour satisfaisaient aux recommandations en matière d'activité physique, soit ≥ 60 minutes d'activité modérée à intense par jour. Les moniteurs Fitbit ont enregistré un plus grand nombre de pas que les accéléromètres ActiGraph (-2242 pas par jour, limites de concordance à 95 %: -7738 à 3253). Cette différence a été plus importante chez les garçons que chez les filles. Les moniteurs Fitbit ont été portés plus longtemps que les accéléromètres ActiGraph (-36 minutes par jour, limites de concordance à 95 %: -334 à 261), mais l’écart entre les temps de port des deux dispositifs ne suffit pas à expliquer la différence observée entre ces derniers quant au nombre de pas comptés (7 %, P = 0,048).

      Conclusions

      Les moniteurs d'activité physique actuellement offerts sur le marché permettent d’évaluer à distance l'activité physique pratiquée par les enfants atteints de CG, mais les valeurs absolues enregistrées peuvent différer d'un type d'appareil à l'autre. De telles données sont toutefois utiles étant donné l'importance croissante accordée à la promotion et à la surveillance de l'activité physique chez les enfants présentant des facteurs de risque cardiovasculaire.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Takken T.
        • Giardini A.
        • Reybrouck T.
        • et al.
        Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: a report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology.
        Eur J Prev Cardiol. 2012; 19: 1034-1065
        • Longmuir P.E.
        • Brothers J.A.
        • de Ferranti S.D.
        • et al.
        Promotion of physical activity for children and adults with congenital heart disease: a scientific statement from the American Heart Association.
        Circulation. 2013; 127: 2147-2159
        • Kavey R.E.
        • Allada V.
        • Daniels S.R.
        • et al.
        Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics.
        Circulation. 2006; 114: 2710-2738
        • Gibson C.
        • August K.
        • Greene J.
        • et al.
        A televideo exercise and nutrition program for children with acute lymphoblastic leukemia in maintenance therapy: design and methods.
        Open Access J Clin Trials. 2015; 7: 77-84
        • Hayes L.B.
        • Van Camp C.M.
        Increasing physical activity of children during school recess.
        J Appl Behav Anal. 2015; 48: 690-695
        • Hooke M.C.
        • Gilchrist L.
        • Tanner L.
        • Hart N.
        • Withycombe J.S.
        Use of a fitness tracker to promote physical activity in children with acute lymphoblastic leukemia.
        Pediatr Blood Cancer. 2016; 63: 684-689
        • Jacobsen R.M.
        • Ginde S.
        • Mussatto K.
        • et al.
        Can a home-based cardiac physical activity program improve the physical function quality of life in children with Fontan circulation?.
        Congenit Heart Dis. 2016; 11: 175-182
        • Evenson K.R.
        • Goto M.M.
        • Furberg R.D.
        Systematic review of the validity and reliability of consumer-wearable activity trackers.
        Int J Behav Nutr Phys Act. 2015; 12: 159
        • Welk G.J.
        • Corbin C.B.
        • Dale D.
        Measurement issues in the assessment of physical activity in children.
        Res Q Exerc Sport. 2000; 71: S59-S73
        • Fitbit Inc
        How Does My Tracker Count Steps?.
        (Available at:) (Accessed August 9, 2016)
        • Warnes C.A.
        • Williams R.G.
        • Bashore T.M.
        • et al.
        ACC/AHA 2008 Guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease).
        Circulation. 2008; 118: e714-e833
        • de Onis M.
        • Onyango A.W.
        • Borghi E.
        • et al.
        Development of a WHO growth reference for school-aged children and adolescents.
        Bull World Health Organ. 2007; 85: 660-667
        • Cole T.J.
        • Bellizzi M.C.
        • Flegal K.M.
        • Dietz W.H.
        Establishing a standard definition for child overweight and obesity worldwide: international survey.
        BMJ. 2000; 320: 1240-1243
        • Sherar L.B.
        • Griew P.
        • Esliger D.W.
        • et al.
        International children’s accelerometry database (ICAD): design and methods.
        BMC Public Health. 2011; 11: 485
        • Evenson K.R.
        • Catellier D.J.
        • Gill K.
        • Ondrak K.S.
        • McMurray R.G.
        Calibration of two objective measures of physical activity for children.
        J Sports Sci. 2008; 26: 1557-1565
        • Gabel L.
        • McKay H.A.
        • Nettlefold L.
        • Race D.
        • Macdonald H.M.
        Bone architecture and strength in the growing skeleton: the role of sedentary time.
        Med Sci Sports Exerc. 2015; 47: 363-372
        • Trost S.G.
        • Pate R.R.
        • Freedson P.S.
        • Sallis J.F.
        • Taylor W.C.
        Using objective physical activity measures with youth: how many days of monitoring are needed?.
        Med Sci Sports Exerc. 2000; 32: 426-431
        • Canadian Society for Exercise Physiology
        24-Hour Movement Guidelines for Children and Youth.
        (Available at:) (Accessed August 9, 2016)
        • Akobeng A.K.
        Understanding diagnostic tests 3: receiver operating characteristic curves.
        Acta Paediatr. 2007; 96: 644-647
        • Sirard J.R.
        • Slater M.E.
        Compliance with wearing physical activity accelerometers in high school students.
        J Phys Act Health. 2009; 6: S148-S155
        • Colley R.C.
        • Garriguet D.
        • Janssen I.
        • et al.
        Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey.
        Health Rep. 2011; 22: 15-23
        • Tamayo C.
        • Manlhiot C.
        • Patterson K.
        • Lalani S.
        • McCrindle B.W.
        Longitudinal evaluation of the prevalence of overweight/obesity in children with congenital heart disease.
        Can J Cardiol. 2015; 31: 117-123
        • Tudor-Locke C.
        • Sisson S.B.
        • Lee S.M.
        • et al.
        Evaluation of quality of commercial pedometers.
        Can J Public Health. 2006; 97 (S-6): S10-S15
      1. FitBit Inc. What Are Active Minutes? Available at: https://help.fitbit.com/articles/en_US/Help_article/1379. Accessed August 9, 2016.

        • Canadian Society for Exercise Physiology
        Canadian Physical Activity Guidelines for Adults 18-64 years.
        (Available at:) (Accessed August 9, 2016)
        • Harrell J.S.
        • McMurray R.G.
        • Baggett C.D.
        • et al.
        Energy costs of physical activities in children and adolescents.
        Med Sci Sports Exerc. 2005; 37: 329-336
        • Ekelund U.
        • Luan J.
        • Sherar L.B.
        • et al.
        Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents.
        JAMA. 2012; 307: 704-712
        • Biddle S.
        • Asare M.
        Physical activity and mental health in children and adolescents: a review of reviews.
        Br J Sports Med. 2011; 45: 886-895
        • Malina R.M.
        Tracking of physical activity and physical fitness across the lifespan.
        Res Q Exerc Sport. 1996; 67: S48-S57
        • Duppen N.
        • Takken T.
        • Hopman M.T.
        • et al.
        Systematic review of the effects of physical exercise training programmes in children and young adults with congenital heart disease.
        Int J Cardiol. 2013; 168: 1779-1787
        • Fairclough S.J.
        • Noonan R.
        • Rowlands A.V.
        • et al.
        Wear compliance and activity in children wearing wrist- and hip-mounted accelerometers.
        Med Sci Sports Exerc. 2016; 48: 245-253
        • Dai S.
        • Carroll D.D.
        • Watson K.B.
        • et al.
        Participation in types of physical activities among US adults–National Health and Nutrition Examination Survey 1999-2006.
        J Phys Act Health. 2015; 12: S128-S140
        • Tully M.A.
        • McBride C.
        • Heron L.
        • Hunter R.F.
        The validation of Fibit Zip physical activity monitor as a measure of free-living physical activity.
        BMC Res Notes. 2014; 7: 952
        • Ferguson T.
        • Rowlands A.V.
        • Olds T.
        • Maher C.
        The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study.
        Int J Behav Nutr Phys Act. 2015; 12: 42
        • Kooiman T.J.
        • Dontje M.L.
        • Sprenger S.R.
        • et al.
        Reliability and validity of ten consumer activity trackers.
        BMC Sports Sci Med Rehabil. 2015; 7: 24
        • Nader P.R.
        • Bradley R.H.
        • Houts R.M.
        • McRitchie S.L.
        • O’Brien M.
        Moderate-to-vigorous physical activity from ages 9 to 15 years.
        JAMA. 2008; 300: 295-305
        • Fakhouri T.H.
        • Hughes J.P.
        • Burt V.L.
        • et al.
        Physical activity in U.S. youth aged 12-15 years, 2012.
        NCHS Data Brief. 2014; : 1-8
        • Dontje M.L.
        • De Groot M.
        • Lengton R.R.
        • Van der Schans C.P.
        • Krijnen W.P.
        Measuring steps with the Fitbit activity tracker: an inter-device reliability study.
        J Med Eng Tech. 2015; 39: 286-290