Canadian Journal of Cardiology

Macrophage Apoptosis and Necrotic Core Development in Atherosclerosis: A Rapidly Advancing Field with Clinical Relevance to Imaging and Therapy

  • Leticia Gonzalez
    Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada

    Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
    Search for articles by this author
  • Bernardo Louis Trigatti
    Corresponding author: Dr Bernardo Louis Trigatti, Department of Biochemistry and Biomedical Sciences, McMaster University, Thrombosis and Atherosclerosis Research Institute, Hamilton General Hospital Campus, 237 Barton St E, Hamilton, Ontario L8L 2X2, Canada. Tel.: +1-905-521-2100 ×40744; fax: +1-905-522-9033.
    Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada

    Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
    Search for articles by this author
Published:December 21, 2016DOI:


      Cardiovascular diseases represent 1 of the main causes of death worldwide, and atherosclerosis is 1 of the major contributors leading to ischemic heart disease. Macrophages actively participate in all stages of atherosclerosis development, from plaque initiation to the transition to vulnerable plaques. Macrophage apoptosis, in particular, has been recognized as a critical step in the formation of the necrotic core, a key characteristic of unstable lesions. In this review, we discuss the role of macrophage apoptosis and clearance of apoptotic cells by efferocytosis in the development of atherosclerosis, with particular emphasis on their contribution to the development of the necrotic core and the clinical implications of this process for plaque stabilization. We consider the molecular triggers of macrophage apoptosis during atherogenesis, the role of endoplasmic reticulum (ER) stress, the roles of key cellular mediators of apoptosis and efferocytosis, and mechanisms of defective efferocytosis in the progression of atherosclerotic plaques. Finally, we discuss the important clinical implications of rapidly evolving macrophage science, such as novel approaches to imaging vulnerable atherosclerotic plaques with macrophage-sensitive positron emission tomography and magnetic resonance imaging, the role of macrophages in mediating beneficial pleiotropic actions of lipid-lowering therapies, and novel therapeutic modalities targeting ER stress, autophagy, and deficient efferocytosis. Advances in understanding the critical role of macrophages in the progression and destabilization of atherosclerosis have the potential to greatly improve the prevention and management of atherosclerotic diseases over the next decade.


      Les maladies cardiovasculaires sont parmi les principales causes de décès à l’échelle mondiale, tandis que l’athérosclérose constitue une des principales causes de cardiopathie ischémique. Les macrophages participent activement à tous les stades de l’évolution de l’athérosclérose, soit du processus de formation initiale de la plaque à la transition vers la plaque athéromateuse instable. De façon plus précise, l’apoptose des macrophages joue un rôle de premier plan dans la nécrose du centre de la plaque, une des principales caractéristiques des lésions athéromateuses instables. Dans cet article, nous traitons du rôle de l’apoptose des macrophages et de l’élimination des cellules apoptotiques par efférocytose dans le processus athérosclérotique en insistant tout particulièrement sur le rôle de ces mécanismes sur la nécrose du centre de la plaque athéromateuse et l’instabilité de cette dernière. Nous discutons notamment des déclencheurs moléculaires de l’apoptose des macrophages lors de l’athérogénèse, du rôle du stress du réticulum endoplasmique (RE) et des médiateurs cellulaires clés de l’apoptose et de l’efférocytose, ainsi que du mode d’évolution de la plaque athéromateuse en cas de diminution de l’efférocytose. Enfin, nous abordons les importantes répercussions cliniques de l’évolution rapide des connaissances sur les macrophages, notamment les nouvelles techniques d’imagerie pour le dépistage des plaques athéromateuses instables à l’aide de la tomographie par émission de positrons sensible aux macrophages et la résonnance magnétique, le rôle des macrophages dans la médiation des effets pléiotropes bénéfiques des hypolipidémiants, les nouveaux traitements ciblant le stress du RE, l’autophagie et la diminution de l’efférocytose. L’amélioration de la compréhension du rôle essentiel joué par les macrophages dans l’évolution et la déstabilisation de la plaque athéromateuse aura vraisemblablement pour effet d’améliorer grandement les modalités de prévention et de prise en charge de l’athérosclérose au cours de la prochaine décennie.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Wong N.D.
        Epidemiological studies of CHD and the evolution of preventive cardiology.
        Nat Rev Cardiol. 2014; 11: 276-289
        • Otsuka F.
        • Yasuda S.
        • Noguchi T.
        • Ishibashi-Ueda H.
        Pathology of coronary atherosclerosis and thrombosis.
        Cardiovasc Diagn Ther. 2016; 6: 396-408
        • Stary H.C.
        Natural history and histological classification of atherosclerotic lesions: an update.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1177-1178
        • Stary H.C.
        • Chandler A.B.
        • Dinsmore R.E.
        • et al.
        A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.
        Arterioscler Thromb Vasc Biol. 1995; 15: 1512-1531
        • Virmani R.
        • Burke A.P.
        • Farb A.
        • Kolodgie F.D.
        Pathology of the vulnerable plaque.
        J Am Coll Cardiol. 2006; 47: C13-C18
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • Farb A.
        • Schwartz S.M.
        Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1262-1275
        • Tabas I.
        • Bornfeldt K.E.
        Macrophage Phenotype and function in different stages of atherosclerosis.
        Circ Res. 2016; 118: 653-667
        • Cochain C.
        • Zernecke A.
        Macrophages and immune cells in atherosclerosis: recent advances and novel concepts.
        Basic Res Cardiol. 2015; 110: 34
        • Allahverdian S.
        • Chehroudi A.C.
        • McManus B.M.
        • Abraham T.
        • Francis G.A.
        Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis.
        Circulation. 2014; 129: 1551-1559
        • Cybulsky M.I.
        • Cheong C.
        • Robbins C.S.
        Macrophages and dendritic cells: partners in atherogenesis.
        Circ Res. 2016; 118: 637-652
        • Ensan S.
        • Li A.
        • Besla R.
        • et al.
        Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth.
        Nat Immunol. 2016; 17: 159-168
        • Feil S.
        • Fehrenbacher B.
        • Lukowski R.
        • et al.
        Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis.
        Circ Res. 2014; 115: 662-667
        • Gordon D.
        • Reidy M.A.
        • Benditt E.P.
        • Schwartz S.M.
        Cell proliferation in human coronary arteries.
        Proc Natl Acad Sci U S A. 1990; 87: 4600-4604
        • Lhotak S.
        • Gyulay G.
        • Cutz J.C.
        • et al.
        Characterization of Proliferating lesion-resident cells during all stages of atherosclerotic growth.
        J Am Heart Assoc. 2016; 5
        • Robbins C.S.
        • Hilgendorf I.
        • Weber G.F.
        • et al.
        Local proliferation dominates lesional macrophage accumulation in atherosclerosis.
        Nat Med. 2013; 19: 1166-1172
        • Rosenfeld M.E.
        Macrophage proliferation in atherosclerosis: an historical perspective.
        Arterioscler Thromb Vasc Biol. 2014; 34: e21-e22
        • Shankman L.S.
        • Gomez D.
        • Cherepanova O.A.
        • et al.
        KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis.
        Nat Med. 2015; 21: 628-637
        • Swirski F.K.
        • Robbins C.S.
        • Nahrendorf M.
        Development and function of arterial and cardiac macrophages.
        Trend Immunol. 2016; 37: 32-40
        • Chinetti-Gbaguidi G.
        • Colin S.
        • Staels B.
        Macrophage subsets in atherosclerosis.
        Nat Rev Cardiol. 2015; 12: 10-17
        • Liberale L.
        • Dallegri F.
        • Montecucco F.
        • Carbone F.
        Pathophysiological relevance of macrophage subsets in atherogenesis.
        Thromb Haemost. 2016; 117
        • Moore K.J.
        • Sheedy F.J.
        • Fisher E.A.
        Macrophages in atherosclerosis: a dynamic balance.
        Nat Rev Immunol. 2013; 13: 709-721
        • Stoger J.L.
        • Gijbels M.J.
        • van der Velden S.
        • et al.
        Distribution of macrophage polarization markers in human atherosclerosis.
        Atherosclerosis. 2012; 225: 461-468
        • Stary H.C.
        • Chandler A.B.
        • Glagov S.
        • et al.
        A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.
        Arterioscler Thromb. 1994; 14: 840-856
        • Gutierrez J.
        • Elkind M.S.
        • Virmani R.
        • et al.
        A pathological perspective on the natural history of cerebral atherosclerosis.
        Int J Stroke. 2015; 10: 1074-1080
        • van Dijk R.A.
        • Virmani R.
        • von der Thusen J.H.
        • Schaapherder A.F.
        • Lindeman J.H.
        The natural history of aortic atherosclerosis: a systematic histopathological evaluation of the peri-renal region.
        Atherosclerosis. 2010; 210: 100-106
        • Newby A.C.
        Metalloproteinases and vulnerable atherosclerotic plaques.
        Trends Cardiovasc Med. 2007; 17: 253-258
        • Scull C.M.
        • Tabas I.
        Mechanisms of ER stress-induced apoptosis in atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2011; 31: 2792-2797
        • Seimon T.
        • Tabas I.
        Mechanisms and consequences of macrophage apoptosis in atherosclerosis.
        J Lipid Res. 2009; 50: S382-S387
        • Elmore S.
        Apoptosis: a review of programmed cell death.
        Toxicol Pathol. 2007; 35: 495-516
        • Locksley R.M.
        • Killeen N.
        • Lenardo M.J.
        The TNF and TNF receptor superfamilies: integrating mammalian biology.
        Cell. 2001; 104: 487-501
        • Chinnaiyan A.M.
        The apoptosome: heart and soul of the cell death machine.
        Neoplasia. 1999; 1: 5-15
        • Saelens X.
        • Festjens N.
        • Vande Walle L.
        • et al.
        Toxic proteins released from mitochondria in cell death.
        Oncogene. 2004; 23: 2861-2874
        • Ortega-Gomez A.
        • Perretti M.
        • Soehnlein O.
        Resolution of inflammation: an integrated view.
        EMBO Mol Med. 2013; 5: 661-674
        • Poon I.K.
        • Lucas C.D.
        • Rossi A.G.
        • Ravichandran K.S.
        Apoptotic cell clearance: basic biology and therapeutic potential.
        Nat Rev Immunol. 2014; 14: 166-180
        • Ravichandran K.S.
        Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways.
        Immunity. 2011; 35: 445-455
        • Peter C.
        • Wesselborg S.
        • Herrmann M.
        • Lauber K.
        Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells.
        Apoptosis. 2010; 15: 1007-1028
        • Segundo C.
        • Medina F.
        • Rodriguez C.
        • et al.
        Surface molecule loss and bleb formation by human germinal center B cells undergoing apoptosis: role of apoptotic blebs in monocyte chemotaxis.
        Blood. 1999; 94: 1012-1020
        • Zernecke A.
        • Bidzhekov K.
        • Noels H.
        • et al.
        Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection.
        Sci Signal. 2009; 2: ra81
        • Gardai S.J.
        • Bratton D.L.
        • Ogden C.A.
        • Henson P.M.
        Recognition ligands on apoptotic cells: a perspective.
        J Leukoc Biol. 2006; 79: 896-903
        • Fadok V.A.
        • Warner M.L.
        • Bratton D.L.
        • Henson P.M.
        CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3).
        J Immunol. 1998; 161: 6250-6257
        • Murao K.
        • Terpstra V.
        • Green S.R.
        • et al.
        Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes.
        J Biol Chem. 1997; 272: 17551-17557
        • Rigotti A.
        • Acton S.L.
        • Krieger M.
        The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids.
        J Biol Chem. 1995; 270: 16221-16224
        • Tao H.
        • Yancey P.G.
        • Babaev V.R.
        • et al.
        Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis.
        J Lipid Res. 2015; 56: 1449-1460
        • Wu Y.
        • Tibrewal N.
        • Birge R.B.
        Phosphatidylserine recognition by phagocytes: a view to a kill.
        Trend Cell Biol. 2006; 16: 189-197
        • Liu J.
        • Thewke D.P.
        • Su Y.R.
        • Linton M.F.
        • Fazio S.
        • Sinensky M.S.
        Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice.
        Arterioscler Thromb Vasc Biol. 2005; 25: 174-179
        • Yamada S.
        • Ding Y.
        • Tanimoto A.
        • et al.
        Apoptosis signal-regulating kinase 1 deficiency accelerates hyperlipidemia-induced atheromatous plaques via suppression of macrophage apoptosis.
        Arterioscler Thromb Vasc Biol. 2011; 31: 1555-1564
        • Arai S.
        • Shelton J.M.
        • Chen M.
        • et al.
        A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development.
        Cell Metab. 2005; 1: 201-213
        • Ait-Oufella H.
        • Kinugawa K.
        • Zoll J.
        • et al.
        Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice.
        Circulation. 2007; 115: 2168-2177
        • Schrijvers D.M.
        • De Meyer G.R.
        • Kockx M.M.
        • Herman A.G.
        • Martinet W.
        Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1256-1261
        • Seimon T.A.
        • Wang Y.
        • Han S.
        • et al.
        Macrophage deficiency of p38alpha MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice.
        J Clin Invest. 2009; 119: 886-898
        • Thorp E.
        • Li G.
        • Seimon T.A.
        • et al.
        Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-/- and Ldlr-/- mice lacking CHOP.
        Cell Metab. 2009; 9: 474-481
        • Tsukano H.
        • Gotoh T.
        • Endo M.
        • et al.
        The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques.
        Arterioscler Thromb Vasc Biol. 2010; 30: 1925-1932
        • Maiolino G.
        • Rossitto G.
        • Caielli P.
        • et al.
        The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts.
        Mediators Inflamm. 2013; 2013: 714653
        • Colgan S.M.
        • Hashimi A.A.
        • Austin R.C.
        Endoplasmic reticulum stress and lipid dysregulation.
        Expert Rev Mol Med. 2011; 13: e4
        • Tabas I.
        The role of endoplasmic reticulum stress in the progression of atherosclerosis.
        Circ Res. 2010; 107: 839-850
        • Lhotak S.
        • Zhou J.
        • Austin R.C.
        Immunohistochemical detection of the unfolded protein response in atherosclerotic plaques.
        Methods Enzymol. 2011; 489: 23-46
        • Myoishi M.
        • Hao H.
        • Minamino T.
        • et al.
        Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome.
        Circulation. 2007; 116: 1226-1233
        • Zhou J.
        • Werstuck G.H.
        • Lhotak S.
        • et al.
        Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice.
        Circulation. 2004; 110: 207-213
        • Arur S.
        • Uche U.E.
        • Rezaul K.
        • et al.
        Annexin I is an endogenous ligand that mediates apoptotic cell engulfment.
        Dev Cell. 2003; 4: 587-598
        • Hetz C.
        The unfolded protein response: controlling cell fate decisions under ER stress and beyond.
        Nat Rev Mol Cell Biol. 2012; 13: 89-102
        • McAlpine C.S.
        • Werstuck G.H.
        The development and progression of atherosclerosis: evidence supporting a role for endoplasmic reticulum (ER) stress signaling.
        Cardiovasc Hematol Disord Drug Targets. 2013; 13: 158-164
        • Ron D.
        • Walter P.
        Signal integration in the endoplasmic reticulum unfolded protein response.
        Nat Rev Mol Cell Biol. 2007; 8: 519-529
        • Zhou A.X.
        • Tabas I.
        The UPR in atherosclerosis.
        Semin Immunopathol. 2013; 35: 321-332
        • Li G.
        • Mongillo M.
        • Chin K.T.
        • et al.
        Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis.
        J Cell Biol. 2009; 186: 783-792
        • McCullough K.D.
        • Martindale J.L.
        • Klotz L.O.
        • Aw T.Y.
        • Holbrook N.J.
        Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state.
        Mol Cell Biol. 2001; 21: 1249-1259
        • Puthalakath H.
        • O'Reilly L.A.
        • Gunn P.
        • et al.
        ER stress triggers apoptosis by activating BH3-only protein Bim.
        Cell. 2007; 129: 1337-1349
        • Manning-Tobin J.J.
        • Moore K.J.
        • Seimon T.A.
        • et al.
        Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice.
        Arterioscler Thromb Vasc Biol. 2009; 29: 19-26
        • Thorp E.
        • Cui D.
        • Schrijvers D.M.
        • Kuriakose G.
        • Tabas I.
        Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice.
        Arterioscler Thromb Vasc Biol. 2008; 28: 1421-1428
        • Boisvert W.A.
        • Rose D.M.
        • Boullier A.
        • et al.
        Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size.
        Arterioscler Thromb Vasc Biol. 2006; 26: 563-569
        • Toth B.
        • Garabuczi E.
        • Sarang Z.
        • et al.
        Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells.
        J Immunol. 2009; 182: 2084-2092
        • Gardai S.J.
        • McPhillips K.A.
        • Frasch S.C.
        • et al.
        Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte.
        Cell. 2005; 123: 321-334
        • Orr A.W.
        • Pedraza C.E.
        • Pallero M.A.
        • et al.
        Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly.
        J Cell Biol. 2003; 161: 1179-1189
        • Yancey P.G.
        • Blakemore J.
        • Ding L.
        • et al.
        Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation.
        Arterioscler Thromb Vasc Biol. 2010; 30: 787-795
        • Braun A.
        • Trigatti B.L.
        • Post M.J.
        • et al.
        Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice.
        Circ Res. 2002; 90: 270-276
        • Covey S.D.
        • Krieger M.
        • Wang W.
        • Penman M.
        • Trigatti B.L.
        Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1589-1594
        • Fuller M.
        • Dadoo O.
        • Serkis V.
        • et al.
        The effects of diet on occlusive coronary artery atherosclerosis and myocardial infarction in scavenger receptor class B, type 1/low-density lipoprotein receptor double knockout mice.
        Arterioscler Thromb Vasc Biol. 2014; 34: 2394-2403
        • Trigatti B.
        • Rayburn H.
        • Vinals M.
        • et al.
        Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology.
        Proc Natl Acad Sci U S A. 1999; 96: 9322-9327
        • Van Eck M.
        • Bos I.S.
        • Hildebrand R.B.
        • Van Rij B.T.
        • Van Berkel T.J.
        Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development.
        Am J Pathol. 2004; 165: 785-794
        • Zhang S.
        • Picard M.H.
        • Vasile E.
        • et al.
        Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice.
        Circulation. 2005; 111: 3457-3464
        • Zhang W.
        • Yancey P.G.
        • Su Y.R.
        • et al.
        Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice.
        Circulation. 2003; 108: 2258-2263
        • Gonzalez L.
        • Yu P.
        • Trigatti B.L.
        Mouse models of coronary artery atherosclerosis.
        J Cardiovasc Disord. 2016; 3: 1021
        • Trigatti B.L.
        • Fuller M.
        HDL signaling and protection against coronary artery atherosclerosis in mice.
        J Biomed Res. 2015; 30
      1. Liao J, Guo X, Wang M, et al. Scavenger receptor class B type 1 deletion led to coronary atherosclerosis and ischemic heart disease in low-density lipoprotein receptor knockout mice on modified western-type diet. J Atheroscler Thromb 2017;24:133-46.

        • Hermann S.
        • Kuhlmann M.T.
        • Starsichova A.
        • et al.
        Imaging reveals the connection between spontaneous coronary plaque ruptures, atherothrombosis, and myocardial infarctions in HypoE/SRBI-/- mice.
        J Nucl Med. 2016; 57: 1420-1427
        • Pei Y.
        • Chen X.
        • Aboutouk D.
        • et al.
        SR-BI in bone marrow derived cells protects mice from diet induced coronary artery atherosclerosis and myocardial infarction.
        PloS One. 2013; 8: e72492
        • Novak M.L.
        • Thorp E.B.
        Shedding light on impaired efferocytosis and nonresolving inflammation.
        Circ Res. 2013; 113: 9-12
        • Garbin U.
        • Baggio E.
        • Stranieri C.
        • et al.
        Expansion of necrotic core and shedding of Mertk receptor in human carotid plaques: a role for oxidized polyunsaturated fatty acids?.
        Cardiovasc Res. 2013; 97: 125-133
        • Handberg A.
        • Norberg M.
        • Stenlund H.
        • et al.
        Soluble CD36 (sCD36) clusters with markers of insulin resistance, and high sCD36 is associated with increased type 2 diabetes risk.
        J Clin Endocrinol Metab. 2010; 95: 1939-1946
        • Driscoll W.S.
        • Vaisar T.
        • Tang J.
        • Wilson C.L.
        • Raines E.W.
        Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype.
        Circ Res. 2013; 113: 52-61
        • Thorp E.
        • Vaisar T.
        • Subramanian M.
        • et al.
        Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cdelta, and p38 mitogen-activated protein kinase (MAPK).
        J Biol Chem. 2011; 286: 33335-33344
        • Marsch E.
        • Theelen T.L.
        • Demandt J.A.
        • et al.
        Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis.
        Arterioscler Thromb Vasc Biol. 2014; 34: 2545-2553
        • Guo T.
        • Ke L.
        • Qi B.
        • et al.
        PTX3 is located at the membrane of late apoptotic macrophages and mediates the phagocytosis of macrophages.
        J Clin Immunol. 2012; 32: 330-339
        • Norata G.D.
        • Marchesi P.
        • Pulakazhi Venu V.K.
        • et al.
        Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis.
        Circulation. 2009; 120: 699-708
        • Lewis M.J.
        • Malik T.H.
        • Ehrenstein M.R.
        • et al.
        Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice.
        Circulation. 2009; 120: 417-426
        • Kojima Y.
        • Downing K.
        • Kundu R.
        • et al.
        Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis.
        J Clin Invest. 2014; 124: 1083-1097
        • Heo K.S.
        • Cushman H.J.
        • Akaike M.
        • et al.
        ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis.
        Circulation. 2014; 130: 180-191
        • Quillard T.
        • Libby P.
        Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development.
        Circ Res. 2012; 111: 231-244
        • Figueroa A.L.
        • Subramanian S.S.
        • Cury R.C.
        • et al.
        Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology.
        Circ Cardiovasc Imaging. 2012; 5: 69-77
        • Cauchon N.
        • Langlois R.
        • Rousseau J.A.
        • et al.
        PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V.
        Eur J Nucl Med Mol Imaging. 2007; 34: 247-258
      2. Elvas F, Boddaert J, Vangestel C, et al. 99mTc-Duramycin SPECT imaging of early tumor response to targeted therapy: a comparison with 18F-FDG PET [e-pub ahead of print]. J Nucl Med pii: jnumed.116.182014.

        • Khoshbakht S.
        • Beiki D.
        • Geramifar P.
        • et al.
        Synthesis, radiolabeling, and biological evaluation of peptide LIKKPF functionalized with HYNIC as apoptosis imaging agent.
        Iran J Pharm Res. 2016; 15: 415-424
        • Perreault A.
        • Richter S.
        • Bergman C.
        • Wuest M.
        • Wuest F.
        Targeting phosphatidylserine with a 64Cu-labeled peptide for molecular imaging of apoptosis.
        Mol Pharm. 2016; 13: 3564-3577
      3. Lv P, Dai Y, Lin J, et al. A comparison study between 3D T2-weighted SPACE and conventional 2D T2-weighted turbo spin echo in assessment of carotid plaque [e-pub ahead of print]. Int J Cardiovasc Imaging 2016 Nov 22.

        • Cohen J.C.
        • Boerwinkle E.
        • Mosley Jr., T.H.
        • Hobbs H.H.
        Sequence variations in PCSK9, low LDL, and protection against coronary heart disease.
        N Engl J Med. 2006; 354: 1264-1272
        • Ridker P.M.
        LDL cholesterol: controversies and future therapeutic directions.
        Lancet. 2014; 384: 607-617
        • Seidah N.G.
        • Awan Z.
        • Chretien M.
        • Mbikay M.
        PCSK9: a key modulator of cardiovascular health.
        Circ Res. 2014; 114: 1022-1036
        • Kysenius K.
        • Muggalla P.
        • Matlik K.
        • Arumae U.
        • Huttunen H.J.
        PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling.
        Cell Mol Life Sci. 2012; 69: 1903-1916
        • Wu C.Y.
        • Tang Z.H.
        • Jiang L.
        • et al.
        PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway.
        Mol Cell Biochem. 2012; 359: 347-358
        • Wu Q.
        • Tang Z.H.
        • Peng J.
        • et al.
        The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer's disease progression (Review).
        Biomed Rep. 2014; 2: 167-171
        • Tang Z.
        • Jiang L.
        • Peng J.
        • et al.
        PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages.
        Int J Mol Med. 2012; 30: 931-938
        • Falk E.
        Pathogenesis of atherosclerosis.
        J Am Coll Cardiol. 2006; 47: C7-C12
        • Erbay E.
        • Babaev V.R.
        • Mayers J.R.
        • et al.
        Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis.
        Nat Med. 2009; 15: 1383-1391
        • Luo B.
        • Gan W.
        • Liu Z.
        • et al.
        Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance.
        Immunity. 2016; 44: 287-302
        • Poti F.
        • Simoni M.
        • Nofer J.R.
        Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P).
        Cardiovasc Res. 2014; 103: 395-404
        • Poti F.
        • Gualtieri F.
        • Sacchi S.
        • et al.
        KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice.
        Arterioscler Thromb Vasc Biol. 2013; 33: 1505-1512
        • Chew W.S.
        • Wang W.
        • Herr D.R.
        To fingolimod and beyond: the rich pipeline of drug candidates that target S1P signaling.
        Pharmacol Res. 2016; 113: 521-532
        • Schrijvers D.M.
        • De Meyer G.R.
        • Martinet W.
        Autophagy in atherosclerosis: a potential drug target for plaque stabilization.
        Arterioscler Thromb Vasc Biol. 2011; 31: 2787-2791
        • Shao B.Z.
        • Han B.Z.
        • Zeng Y.X.
        • Su D.F.
        • Liu C.
        The roles of macrophage autophagy in atherosclerosis.
        Acta Pharmacol Sin. 2016; 37: 150-156
        • Liao X.
        • Sluimer J.C.
        • Wang Y.
        • et al.
        Macrophage autophagy plays a protective role in advanced atherosclerosis.
        Cell Metab. 2012; 15: 545-553
        • Zhai C.
        • Cheng J.
        • Mujahid H.
        • et al.
        Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque.
        PLoS One. 2014; 9: e90563
        • Mueller M.A.
        • Beutner F.
        • Teupser D.
        • Ceglarek U.
        • Thiery J.
        Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR-/- mice despite severe hypercholesterolemia.
        Atherosclerosis. 2008; 198: 39-48
        • Watanabe T.
        • Kotani J.
        • Murata Y.
        • et al.
        Tissue characterization of progressive cardiac allograft vasculopathy in patients with everolimus therapy compared with donor-transmitted atherosclerosis assessed using serial intravascular imaging: a case report.
        Transplant Proc. 2014; 46: 2456-2461
        • Holdaas H.
        • Potena L.
        • Saliba F.
        mTOR inhibitors and dyslipidemia in transplant recipients: a cause for concern?.
        Transplant Rev. 2015; 29: 93-102
        • Das M.
        • Das D.K.
        Resveratrol and cardiovascular health.
        Mol Aspects Med. 2010; 31: 503-512
        • Ginter E.
        • Simko V.
        • Panakova V.
        Antioxidants in health and disease.
        Bratisl Lek Listy. 2014; 115: 603-606
        • Buttari B.
        • Profumo E.
        • Segoni L.
        • et al.
        Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: potential therapeutic implications in atherosclerosis.
        Oxid Med Cell Longev. 2014; 2014: 257543
        • Liu B.
        • Zhang B.
        • Guo R.
        • Li S.
        • Xu Y.
        Enhancement in efferocytosis of oxidized low-density lipoprotein-induced apoptotic RAW264.7 cells through Sirt1-mediated autophagy.
        Int J Mol Med. 2014; 33: 523-533
        • Wang Z.
        • Zou J.
        • Cao K.
        • et al.
        Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels.
        Int J Mol Med. 2005; 16: 533-540