Advertisement
Canadian Journal of Cardiology

MicroRNAs in the Pathobiology and Therapy of Atherosclerosis

  • Benoit Laffont
    Affiliations
    University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Katey J. Rayner
    Correspondence
    Corresponding author: Dr Katey J. Rayner, Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, 40 Ruskin St, H4211, Ottawa, Ontario K1Y 4W7, Canada. Tel.: +1-613-761-5283; fax: +1-613-761-5281.
    Affiliations
    University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
Published:January 05, 2017DOI:https://doi.org/10.1016/j.cjca.2017.01.001

      Abstract

      MicroRNAs are short noncoding RNAs, expressed in humans and involved in sequence-specific post-transcriptional regulation of gene expression. They have emerged as key players in a wide array of biological processes, and changes in their expression and/or function have been associated with plethora of human diseases. Atherosclerosis and its related clinical complications, such as myocardial infarction or stroke, represent the leading cause of death in the Western world. Accumulating experimental evidence has revealed a key role for microRNAs in regulating cellular and molecular processes related to atherosclerosis development, ranging from risk factors, to plaque initiation and progression, up to atherosclerotic plaque rupture. In this review, we focus on how microRNAs can influence atherosclerosis biology, as well as the potential clinical applications of microRNAs, which are being developed as targets as well as therapeutic agents for a growing industry hoping to harness the power of RNA-guided gene regulation to fight disease and infection.

      Résumé

      Chez l’humain, les micro-ARN sont de courts acides ribonucléiques (ARN) non codants qui participent à la régulation post-transcriptionnelle séquence-spécifique de l’expression des gènes. Il a été déterminé que les micro-ARN constituaient des éléments clés d’un grand nombre de processus biologiques et que la modification de leur expression et/ou de leur fonction était associée à un très grand nombre de maladies chez l’humain. L’athérosclérose et ses conséquences cliniques, notamment l’infarctus du myocarde et l’accident vasculaire cérébral, constituent la principale cause de décès en Occident. Les preuves scientifiques s’accumulent relativement au rôle joué par les micro-ARN dans la régulation des processus cellulaires et moléculaires de l’athérosclérose qui vont de la présence des facteurs de risque à la rupture de la plaque athéromateuse, en passant par l’apparition et l’évolution de cette dernière. Dans cet article, nous passons en revue la façon dont les micro-ARN peuvent influer sur les processus biologiques associés à la plaque athéromateuse de même que les possibles applications cliniques des micro-ARN, tant à titre de cibles et d’agents thérapeutiques, par une industrie en pleine croissance qui espère exploiter les possibilités de la régulation génique par l’ARN pour combattre les maladies et les infections.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Reinhart B.J.
        • Slack F.J.
        • Basson M.
        • et al.
        The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.
        Nature. 2000; 403: 901-906
        • Kozomara A.
        • Griffiths-Jones S.
        miRBase: integrating microRNA annotation and deep-sequencing data.
        Nucleic Acids Res. 2011; 39: D152-D157
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Ardekani A.M.
        • Naeini M.M.
        The role of MicroRNAs in human diseases.
        Avicenna J Med Biotechnol. 2010; 2: 161-179
        • Ha M.
        • Kim V.N.
        Regulation of microRNA biogenesis.
        Nat Rev Mol Cell Biol. 2014; 15: 509-524
        • Kawamata T.
        • Seitz H.
        • Tomari Y.
        Structural determinants of miRNAs for RISC loading and slicer-independent unwinding.
        Nat Struct Mol Biol. 2009; 16: 953-960
        • Kwak P.B.
        • Tomari Y.
        The N domain of Argonaute drives duplex unwinding during RISC assembly.
        Nat Struct Mol Biol. 2012; 19: 145-151
        • Krol J.
        • Loedige I.
        • Filipowicz W.
        The widespread regulation of microRNA biogenesis, function and decay.
        Nat Rev Genetics. 2010; 11: 597-610
        • Daniels T.F.
        • Killinger K.M.
        • Michal J.J.
        • Wright Jr., R.W.
        • Jiang Z.
        Lipoproteins, cholesterol homeostasis and cardiac health.
        Int J Biol Sci. 2009; 5: 474-488
        • Ross R.
        Atherosclerosis–an inflammatory disease.
        N Engl J Med. 1999; 340: 115-126
        • Goedeke L.
        • Rotllan N.
        • Canfrán-Duque A.
        • et al.
        MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels.
        Nat Med. 2015; 21: 1280-1289
        • Esau C.
        • Davis S.
        • Murray S.F.
        • et al.
        miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.
        Cell Metab. 2006; 3: 87-98
        • Soh J.
        • Iqbal J.
        • Queiroz J.
        • Fernandez-Hernando C.
        • Hussain M.M.
        MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion.
        Nat Med. 2013; 19: 892-900
        • Rayner K.J.
        • Esau C.C.
        • Hussain F.N.
        • et al.
        Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides.
        Nature. 2011; 478: 404-407
        • Rayner K.J.
        • Sheedy F.J.
        • Esau C.C.
        • et al.
        Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.
        J Clin Invest. 2011; 121: 2921-2931
        • Rayner K.J.
        • Suárez Y.
        • Dávalos A.
        • et al.
        MiR-33 contributes to the regulation of cholesterol homeostasis.
        Science. 2010; 328: 1570-1573
        • Horie T.
        • Baba O.
        • Kuwabara Y.
        • et al.
        MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice.
        J Am Heart Assoc. 2012; 1: e003376
        • Marquart T.J.
        • Wu J.
        • Lusis A.J.
        • Baldan A.
        Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice.
        Arterioscler Thromb Vasc Biol. 2013; 33: 455-458
        • Schober A.
        • Nazari-Jahantigh M.
        • Wei Y.
        • et al.
        MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1.
        Nat Med. 2014; 20: 368-376
        • Loyer X.
        • Potteaux S.
        • Vion A.C.
        • et al.
        Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice.
        Circ Res. 2014; 114: 434-443
        • Ouimet M.
        • Ediriweera H.N.
        • Gundra U.M.
        • et al.
        MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis.
        J Clin Invest. 2015; 125: 4334-4348
        • Wei Y.
        • Nazari-Jahantigh M.
        • Chan L.
        • et al.
        The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis.
        Circulation. 2013; 127: 1609-1619
        • Nazari-Jahantigh M.
        • Wei Y.
        • Noels H.
        • et al.
        MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages.
        J Clin Invest. 2012; 122: 4190-4202
        • Du F.
        • Yu F.
        • Wang Y.
        • et al.
        MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice.
        Arterioscler Thromb Vasc Biol. 2014; 34: 759-767
        • Donners M.M.
        • Wolfs I.M.
        • Stöger L.J.
        • et al.
        Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice.
        PLoS One. 2012; 7: e35877
        • Wagschal A.
        • Najafi-Shoushtari S.H.
        • Wang L.
        • et al.
        Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.
        Nat Med. 2015; 21: 1290-1297
        • Yvan-Charvet L.
        • Wang N.
        • Tall A.R.
        Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses.
        Arterioscler Thromb Vasc Biol. 2010; 30: 139-143
        • Vickers K.C.
        • Landstreet S.R.
        • Levin M.G.
        • et al.
        MicroRNA-223 coordinates cholesterol homeostasis.
        Proc Natl Acad Sci U S A. 2014; 111: 14518-14523
        • Vickers K.C.
        • Palmisano B.T.
        • Shoucri B.M.
        • Shamburek R.D.
        • Remaley A.T.
        MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.
        Nat Cell Biol. 2011; 13: 423-433
        • Janssen H.L.
        • Reesink H.W.
        • Lawitz E.J.
        • et al.
        Treatment of HCV infection by targeting microRNA.
        N Engl J Med. 2013; 368: 1685-1694
        • Tsai W.C.
        • Hsu S.D.
        • Hsu C.S.
        • et al.
        MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis.
        J Clin Invest. 2012; 122: 2884-2897
        • Elmen J.
        • Lindow M.
        • Silahtaroglu A.
        • et al.
        Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver.
        Nucleic Acids Res. 2008; 36: 1153-1162
        • Vickers K.C.
        • Shoucri B.M.
        • Levin M.G.
        • et al.
        MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia.
        Hepatology. 2013; 57: 533-542
        • Horie T.
        • Ono K.
        • Horiguchi M.
        • et al.
        MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo.
        Proc Natl Acad Sci U S A. 2010; 107: 17321-17326
        • Ramirez C.M.
        • Dávalos A.
        • Goedeke L.
        • et al.
        MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1.
        Arterioscler Thromb Vasc Biol. 2011; 31: 2707-2714
        • de Aguiar Vallim T.Q.
        • Tarling E.J.
        • Kim T.
        • et al.
        MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor.
        Circ Res. 2013; 112: 1602-1612
        • Kim J.
        • Yoon H.
        • Ramírez C.M.
        • et al.
        MiR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression.
        Exp Neurol. 2012; 235: 476-483
        • Price N.L.
        • Ramirez C.M.
        • Fernandez-Hernando C.
        Relevance of microRNA in metabolic diseases.
        Crit Rev Clin Lab Sci. 2014; 51: 305-320
        • Wang L.
        • Jia X.J.
        • Jiang H.J.
        • et al.
        MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition.
        Mol Cell Biol. 2013; 33: 1956-1964
        • Hu Z.
        • Shen W.J.
        • Kraemer F.B.
        • Azhar S.
        MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells.
        Mol Cell Biol. 2012; 32: 5035-5045
        • Allen R.M.
        • Marquart T.J.
        • Albert C.J.
        • et al.
        miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity.
        EMBO Mol Med. 2012; 4: 882-895
        • Naar A.M.
        Anti-atherosclerosis or no anti-atherosclerosis: that is the miR-33 question.
        Arterioscler Thromb Vasc Biol. 2013; 33: 447-448
        • Goedeke L.
        • Salerno A.
        • Ramírez C.M.
        • et al.
        Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice.
        EMBO Mol Med. 2014; 6: 1133-1141
        • Meiler S.
        • Baumer Y.
        • Toulmin E.
        • Seng K.
        • Boisvert W.A.
        MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2015; 35: 323-331
        • Wang D.
        • Xia M.
        • Yan X.
        • et al.
        Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b.
        Circ Res. 2012; 111: 967-981
        • Sun D.
        • Zhang J.
        • Xie J.
        • et al.
        MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7.
        FEBS Lett. 2012; 586: 1472-1479
        • Wang D.
        • Yan X.
        • Xia M.
        • et al.
        Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway.
        Arterioscler Thromb Vasc Biol. 2014; 34: 1860-1870
        • d'Audigier C.
        • Cochain C.
        • Rossi E.
        • et al.
        Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism.
        Angiogenesis. 2015; 18: 347-359
        • Cuhlmann S.
        • Van der Heiden K.
        • Saliba D.
        • et al.
        Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1: a novel mode of NF-kappaB regulation that promotes arterial inflammation.
        Circ Res. 2011; 108: 950-959
        • Collins T.
        • Read M.A.
        • Neish A.S.
        • et al.
        Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.
        FASEB J. 1995; 9: 899-909
        • Harris T.A.
        • Yamakuchi M.
        • Ferlito M.
        • Mendell J.T.
        • Lowenstein C.J.
        MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1.
        Proc Natl Acad Sci U S A. 2008; 105: 1516-1521
        • Suarez Y.
        • Wang C.
        • Manes T.D.
        • Pober J.S.
        Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation.
        J Immunol. 2010; 184: 21-25
        • Zhu N.
        • Zhang D.
        • Chen S.
        • et al.
        Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration.
        Atherosclerosis. 2011; 215: 286-293
        • Fang Y.
        • Shi C.
        • Manduchi E.
        • Civelek M.
        • Davies P.F.
        MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro.
        Proc Natl Acad Sci U S A. 2010; 107: 13450-13455
        • Liao Y.C.
        • Wang Y.S.
        • Guo Y.C.
        • et al.
        Let-7g improves multiple endothelial functions through targeting transforming growth factor-beta and SIRT-1 signaling.
        J Am Coll Cardiol. 2014; 63: 1685-1694
        • Sun X.
        • He S.
        • Wara A.K.
        • et al.
        Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice.
        Circ Res. 2014; 114: 32-40
        • Sun X.
        • Icli B.
        • Wara A.K.
        • et al.
        MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation.
        J Clin Invest. 2012; 122: 1973-1990
        • Cheng H.S.
        • Sivachandran N.
        • Lau A.
        • et al.
        MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways.
        EMBO Mol Med. 2013; 5: 949-966
        • Wu W.
        • Xiao H.
        • Laguna-Fernandez A.
        • et al.
        Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a.
        Circulation. 2011; 124: 633-641
        • Schmitt M.M.
        • Megens R.T.
        • Zernecke A.
        • et al.
        Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis.
        Circulation. 2014; 129: 66-76
        • Foteinos G.
        • Hu Y.
        • Xiao Q.
        • Metzler B.
        • Xu Q.
        Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice.
        Circulation. 2008; 117: 1856-1863
        • Zeng L.
        • Zampetaki A.
        • Margariti A.
        • et al.
        Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow.
        Proc Natl Acad Sci U S A. 2009; 106: 8326-8331
        • Chen C.H.
        • Jiang W.
        • Via D.P.
        • et al.
        Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression.
        Circulation. 2000; 101: 171-177
        • Liu D.
        • Zhang X.L.
        • Yan C.H.
        • et al.
        MicroRNA-495 regulates the proliferation and apoptosis of human umbilical vein endothelial cells by targeting chemokine CCL2.
        Thromb Res. 2015; 135: 146-154
        • Menghini R.
        • Casagrande V.
        • Cardellini M.
        • et al.
        MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1.
        Circulation. 2009; 120: 1524-1532
        • Ito T.
        • Yagi S.
        • Yamakuchi M.
        MicroRNA-34a regulation of endothelial senescence.
        Biochem Biophys Res Commun. 2010; 398: 735-740
        • Vasa-Nicotera M.
        • Chen H.
        • Tucci P.
        • et al.
        miR-146a is modulated in human endothelial cell with aging.
        Atherosclerosis. 2011; 217: 326-330
        • Moore K.J.
        • Tabas I.
        Macrophages in the pathogenesis of atherosclerosis.
        Cell. 2011; 145: 341-355
        • Wei Y.
        • Schober A.
        MicroRNA regulation of macrophages in human pathologies.
        Cell Mol Life Sci. 2016; 73: 3473-3495
        • Ponomarev E.D.
        • Veremeyko T.
        • Barteneva N.
        • Krichevsky A.M.
        • Weiner H.L.
        MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway.
        Nat Med. 2011; 17: 64-70
        • Zhuang G.
        • Meng C.
        • Guo X.
        • et al.
        A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation.
        Circulation. 2012; 125: 2892-2903
        • Chaudhuri A.A.
        • So A.Y.
        • Sinha N.
        • et al.
        MicroRNA-125b potentiates macrophage activation.
        J Immunol. 2011; 187: 5062-5068
        • Banerjee S.
        • Cui H.
        • Xie N.
        • et al.
        miR-125a-5p regulates differential activation of macrophages and inflammation.
        J Biol Chem. 2013; 288: 35428-35436
        • Chen T.
        • Huang Z.
        • Wang L.
        • et al.
        MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages.
        Cardiovasc Res. 2009; 83: 131-139
        • Yang K.
        • He Y.S.
        • Wang X.Q.
        • et al.
        MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4.
        FEBS Lett. 2011; 585: 854-860
        • Chen T.
        • Yan H.
        • Li Z.
        • et al.
        MicroRNA-155 regulates lipid uptake, adhesion/chemokine marker secretion and SCG2 expression in oxLDL-stimulated dendritic cells/macrophages.
        Int J Cardiol. 2011; 147: 446-447
        • Tian F.J.
        • An L.N.
        • Wang G.K.
        • et al.
        Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis.
        Cardiovasc Res. 2014; 103: 100-110
        • Ye J.
        • Guo R.
        • Shi Y.
        • et al.
        miR-155 regulated inflammation response by the SOCS1-STAT3-PDCD4 axis in atherogenesis.
        Mediators Inflamm. 2016; 2016: 8060182
        • Wu C.
        • Gong Y.
        • Yuan J.
        • et al.
        microRNA-181a represses ox-LDL-stimulated inflammatory response in dendritic cell by targeting c-Fos.
        J Lipid Res. 2012; 53: 2355-2363
        • Yang L.
        • Boldin M.P.
        • Yu Y.
        • et al.
        miR-146a controls the resolution of T cell responses in mice.
        J Exp Med. 2012; 209: 1655-1670
        • Bennett M.R.
        • Sinha S.
        • Owens G.K.
        Vascular smooth muscle cells in atherosclerosis.
        Circ Res. 2016; 118: 692-702
        • Cordes K.R.
        • Sheehy N.T.
        • White M.P.
        • et al.
        miR-145 and miR-143 regulate smooth muscle cell fate and plasticity.
        Nature. 2009; 460: 705-710
        • Hergenreider E.
        • Heydt S.
        • Tréguer K.
        • et al.
        Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs.
        Nat Cell Biol. 2012; 14: 249-256
        • Vengrenyuk Y.
        • Nishi H.
        • Long X.
        • et al.
        Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype.
        Arterioscler Thromb Vasc Biol. 2015; 35: 535-546
        • Boettger T.
        • Beetz N.
        • Kostin S.
        • et al.
        Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster.
        J Clin Invest. 2009; 119: 2634-2647
        • Cheng Y.
        • Liu X.
        • Yang J.
        • et al.
        MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation.
        Circ Res. 2009; 105: 158-166
        • Lovren F.
        • Pan Y.
        • Quan A.
        • et al.
        MicroRNA-145 targeted therapy reduces atherosclerosis.
        Circulation. 2012; 126: S81-S90
        • Xin M.
        • Small E.M.
        • Sutherland L.B.
        • et al.
        MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury.
        Genes Dev. 2009; 23: 2166-2178
        • Torella D.
        • Iaconetti C.
        • Catalucci D.
        • et al.
        MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo.
        Circ Res. 2011; 109: 880-893
        • Li P.
        • Zhu N.
        • Yi B.
        • et al.
        MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation.
        Circ Res. 2013; 113: 1117-1127
        • Xu F.
        • Ahmed A.S.
        • Kang X.
        • et al.
        MicroRNA-15b/16 attenuates vascular neointima formation by promoting the contractile phenotype of vascular smooth muscle through targeting YAP.
        Arterioscler Thromb Vasc Biol. 2015; 35: 2145-2152
        • Leeper N.J.
        • Raiesdana A.
        • Kojima Y.
        • et al.
        MicroRNA-26a is a novel regulator of vascular smooth muscle cell function.
        J Cell Physiol. 2011; 226: 1035-1043
        • Ji R.
        • Cheng Y.
        • Yue J.
        • et al.
        MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation.
        Circ Res. 2007; 100: 1579-1588
        • Liu X.
        • Cheng Y.
        • Zhang S.
        • et al.
        A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia.
        Circ Res. 2009; 104: 476-487
        • Lusis A.J.
        Atherosclerosis.
        Nature. 2000; 407: 233-241
        • Boon R.A.
        • Seeger T.
        • Heydt S.
        • et al.
        MicroRNA-29 in aortic dilation: implications for aneurysm formation.
        Circ Res. 2011; 109: 1115-1119
        • Castoldi G.
        • Di Gioia C.R.
        • Bombardi C.
        • et al.
        MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension.
        J Cell Physiol. 2012; 227: 850-856
        • Kato M.
        • Zhang J.
        • Wang M.
        • et al.
        MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors.
        Proc Natl Acad Sci U S A. 2007; 104: 3432-3437
        • Thum T.
        • Gross C.
        • Fiedler J.
        • et al.
        MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts.
        Nature. 2008; 456: 980-984
        • Lin Y.
        • Liu X.
        • Cheng Y.
        • et al.
        Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells.
        J Biol Chem. 2009; 284: 7903-7913
        • Zernecke A.
        • Bidzhekov K.
        • Noels H.
        • et al.
        Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection.
        Sci Signal. 2009; 2: ra81
        • Ma F.
        • Xu S.
        • Liu X.
        • et al.
        The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma.
        Nat Immunol. 2011; 12: 861-869
        • Newby A.C.
        Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability.
        Arterioscler Thromb Vasc Biol. 2008; 28: 2108-2114
        • Cipollone F.
        • Felicioni L.
        • Sarzani R.
        • et al.
        A unique microRNA signature associated with plaque instability in humans.
        Stroke. 2011; 42: 2556-2563
        • Fan X.
        • Wang E.
        • Wang X.
        • Cong X.
        • Chen X.
        MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs.
        Exp Mol Pathol. 2014; 96: 242-249
        • Di Gregoli K.
        • Jenkins N.
        • Salter R.
        • et al.
        MicroRNA-24 regulates macrophage behavior and retards atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2014; 34: 1990-2000
        • Wei Y.
        • Zhu M.
        • Corbalán-Campos J.
        • et al.
        Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2015; 35: 796-803
        • Das A.
        • Ganesh K.
        • Khanna S.
        • Sen C.K.
        • Roy S.
        Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation.
        J Immunol. 2014; 192: 1120-1129
        • Yvan-Charvet L.
        • Pagler T.A.
        • Seimon T.A.
        • et al.
        ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis.
        Circ Res. 2010; 106: 1861-1869
        • Rajamaki K.
        • Lappalainen J.
        • Oörni K.
        • et al.
        Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation.
        PLoS One. 2010; 5: 11765
        • Haneklaus M.
        • Gerlic M.
        • Kurowska-Stolarska M.
        • et al.
        Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production.
        J Immunol. 2012; 189: 3795-3799
        • Dey N.
        • Das F.
        • Mariappan M.M.
        • et al.
        MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes.
        J Biol Chem. 2011; 286: 25586-25603
        • Feng J.
        • Xing W.
        • Xie L.
        Regulatory roles of microRNAs in diabetes.
        Int J Mol Sci. 2016; 17: E1729
        • Sequeira-Lopez M.L.
        • Weatherford E.T.
        • Borges G.R.
        • et al.
        The microRNA-processing enzyme dicer maintains juxtaglomerular cells.
        J Am Soc Nephrol. 2010; 21: 460-467
        • Santulli G.
        MicroRNAs and endothelial (dys) function.
        J Cell Physiol. 2016; 231: 1638-1644
      1. Karakas M, Schulte C, Appelbaum S, et al. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. [epub ahead of print]. Eur Heart J; http://dx.doi.org10.1093/eurheartj/ehw250, accessed December 1, 2016.

        • Fichtlscherer S.
        • De Rosa S.
        • Fox H.
        • et al.
        Circulating microRNAs in patients with coronary artery disease.
        Circ Res. 2010; 107: 677-684
        • Bell D.A.
        • Hooper A.J.
        • Burnett J.R.
        Mipomersen, an antisense apolipoprotein B synthesis inhibitor.
        Expert Opin Investig Drugs. 2011; 20: 265-272
        • Jopling C.L.
        • Yi M.
        • Lancaster A.M.
        • Lemon S.M.
        • Sarnow P.
        Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA.
        Science. 2005; 309: 1577-1581
        • Lanford R.E.
        • Hildebrandt-Eriksen E.S.
        • Petri A.
        • et al.
        Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.
        Science. 2010; 327: 198-201
        • Ling H.
        • Fabbri M.
        • Calin G.A.
        MicroRNAs and other non-coding RNAs as targets for anticancer drug development.
        Nat Rev Drug Discov. 2013; 12: 847-865
        • Broderick J.A.
        • Zamore P.D.
        MicroRNA therapeutics.
        Gene Ther. 2011; 18: 1104-1110
        • Kota J.
        • Chivukula R.R.
        • O'Donnell K.A.
        • et al.
        Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model.
        Cell. 2009; 137: 1005-1017
        • Cerchia L.
        • Esposito C.L.
        • Camorani S.
        • et al.
        Targeting Axl with an high-affinity inhibitory aptamer.
        Mol Ther. 2012; 20: 2291-2303
        • Esposito C.L.
        • Cerchia L.
        • Catuogno S.
        • et al.
        Multifunctional aptamer-miRNA conjugates for targeted cancer therapy.
        Mol Ther. 2014; 22: 1151-1163