Advertisement
Canadian Journal of Cardiology

The Role of 3-D Heart Models in Planning and Executing Interventional Procedures

Published:February 24, 2017DOI:https://doi.org/10.1016/j.cjca.2017.02.009

      Abstract

      Percutaneous interventions aimed at addressing congenital and structural heart disease are simultaneously becoming more common and more complex as time progresses. An increasing number of heart defects that had previously required open heart surgery can now be successfully addressed in the cardiac catheterization laboratory. Adequate preprocedural preparation for these novel, complex procedures is critical to ensure their success. Diagnostic data can be collected before the intervention and displayed in multiple formats during the procedure. Advanced cardiac imaging, including cardiac magnetic resonance and cardiac computed tomography form the basis of this preparatory information. Novel methods of displaying these images are becoming more widespread and more useful, including 3-D printed models, 3-D digital models displayed on a virtual or augmented reality system and 3-D digital models overlaid onto a fluoroscopy system. In this review we summarize these state-of-the-art technologies and how they are able to help interventional cardiologists push the boundaries of what is possible in the cardiac catheterization laboratory.

      Résumé

      Au fil du temps, les interventions percutanées visant à corriger les problèmes cardiaques congénitaux et structurels augmentent tant en fréquence qu’en complexité. En effet, un nombre de plus en plus important de malformations cardiaques congénitales qui nécessitaient autrefois une chirurgie à cœur ouvert peuvent désormais être traitées avec succès en laboratoire de cathétérisme cardiaque. Il est toutefois essentiel de bien préparer ces interventions novatrices et complexes pour en assurer le succès. Des données diagnostiques peuvent notamment être recueillies avant l’intervention pour ensuite être visualisées, sous divers formats, avant et pendant l’intervention. Les techniques d’imagerie cardiaque de pointe, notamment la résonance magnétique cardiaque et la tomodensitométrie cardiaque constituent la base de cette information préparatoire. De nouvelles méthodes de visualisation de ces images, dont les modèles imprimés en 3D, les modèles numériques en 3D s’affichant sur un système virtuel ou de réalité augmentée de même que les modèles numériques en 3D superposés sous fluoroscopie, sont de plus en plus utilisées. Dans cet article, nous faisons le point sur ces technologies de pointe et la façon dont elles aident les cardiologues interventionnels à repousser les limites du possible au laboratoire de cathétérisme cardiaque.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moore J.W.
        • Vincent R.N.
        • Beekman R.H.
        • et al.
        Procedural results and safety of common interventional procedures in congenital heart disease: initial report from the National Cardiovascular Data Registry.
        J Am Coll Cardiol. 2014; 64: 2439-2451
        • Promphan W.
        • Qureshi S.A.
        What interventional cardiologists are still leaving to the surgeons?.
        Front Pediatr. 2016; 4: 59
        • Feltes T.F.
        • Bacha E.
        • Beekman 3rd, R.H.
        • et al.
        Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association.
        Circulation. 2011; 123: 2607-2652
        • Kim M.S.
        • Hansgen A.R.
        • Wink O.
        • Quaife R.A.
        • Carroll J.D.
        Rapid prototyping: a new tool in understanding and treating structural heart disease.
        Circulation. 2008; 117: 2388-2394
        • Greil G.F.
        • Wolf I.
        • Kuettner A.
        • et al.
        Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging.
        Clin Res Cardiol. 2007; 96: 176-185
        • Mottl-Link S.
        • Hübler M.
        • Kühne T.
        • et al.
        Physical models aiding in complex congenital heart surgery.
        Ann Thorac Surg. 2008; 86: 273-277
        • Schmauss D.
        • Haeberle S.
        • Hagl C.
        • Sodian R.
        Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience.
        Eur J Cardiothorac Surg. 2015; 47: 1044-1052
        • O'Neill B.
        • Wang D.D.
        • Pantelic M.
        • et al.
        Transcatheter caval valve implantation using multimodality imaging: roles of TEE, CT, and 3D printing.
        JACC Cardiovasc Imaging. 2015; 8: 221-225
        • Grant E.K.
        • Faranesh A.Z.
        • Cross R.R.
        • et al.
        Image fusion guided device closure of left ventricle to right atrium shunt.
        Circulation. 2015; 132: 1366-1367
        • Olivieri L.
        • Krieger A.
        • Chen M.Y.
        • Kim P.
        • Kanter J.P.
        3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA.
        Int J Cardiol. 2014; 172: e297-e298
        • Poterucha J.T.
        • Foley T.A.
        • Taggart N.W.
        Percutaneous pulmonary valve implantation in a native outflow tract: 3-dimensional DynaCT rotational angiographic reconstruction and 3-dimensional printed model.
        JACC Cardiovasc Interv. 2014; 7: e151-e152
        • Olivieri L.J.
        • Krieger A.
        • Loke Y.H.
        • et al.
        Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy.
        J Am Soc Echocardiogr. 2015; 28: 392-397
        • Costello J.P.
        • Olivieri L.J.
        • Krieger A.
        • et al.
        Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education.
        World J Pediatr Congenit Heart Surg. 2014; 5: 421-426
        • Byrne N.
        • Velasco Forte M.
        • Tandon A.
        • Valverde I.
        • Hussain T.
        A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system.
        JRSM Cardiovasc Dis. 2016; 5 (2048004016645467)
        • Loke T.
        • Krieger A.
        • Sable C.
        • Olivieri L.
        Novel uses for three-dimensional printing in congenital heart disease.
        Curr Pediatr Rep. 2016; 4: 28-34
        • Coakley M.F.
        • Hurt D.E.
        • Weber N.
        • et al.
        The NIH 3D Print Exchange: a public resource for bioscientific and biomedical 3D prints.
        3D Print Addit Manuf. 2014; 1: 137-140
      1. U.S. Department of Health and Human Services — National Institutes of Health. NIH 3D Print Exchange. Heart Library. 3D rendering quality and methods. Available at: http://3dprint.nih.gov/collections/heart-library/quality-and-methods. Accessed January 4, 2017.

        • Giannopoulos A.A.
        • Mitsouras D.
        • Yoo S.J.
        • et al.
        Applications of 3D printing in cardiovascular diseases.
        Nat Rev Cardiol. 2016; 13: 701-718
        • Ferandos C.
        • El-Said H.
        • Hamzeh R.
        • Moore J.W.
        Adverse impact of vascular stent “mass effect” on airways.
        Catheter Cardiovasc Interv. 2009; 74: 132-136
        • Lederman R.J.
        • Babaliaros V.C.
        • Greenbaum A.B.
        How to perform transcaval access and closure for transcatheter aortic valve implantation.
        Catheter Cardiovasc Interv. 2015; 86: 1242-1254
        • Ratnayaka K.
        • Raman V.K.
        • Faranesh A.Z.
        • et al.
        Antegrade percutaneous closure of membranous ventricular septal defect using X-ray fused with magnetic resonance imaging.
        JACC Cardiovasc Interv. 2009; 2: 224-230
        • Abu Hazeem A.A.
        • Dori Y.
        • Whitehead K.K.
        • et al.
        X-ray magnetic resonance fusion modality may reduce radiation exposure and contrast dose in diagnostic cardiac catheterization of congenital heart disease.
        Catheter Cardiovasc Interv. 2014; 84: 795-800
        • Aldoss O.
        • Fonseca B.M.
        • Truong U.T.
        • et al.
        Diagnostic utility of three-dimensional rotational angiography in congenital cardiac catheterization.
        Pediatr Cardiol. 2016; 37: 1211-1221
        • Glöckler M.
        • Halbfaβ J.
        • Koch A.
        • Achenbach S.
        • Dittrich S.
        Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease–a single-center, retrospective analysis of 78 cases.
        Catheter Cardiovasc Interv. 2013; 82: 436-442
        • Marelli A.J.
        • Mackie A.S.
        • Ionescu-Ittu R.
        • Rahme E.
        • Pilote L.
        Congenital heart disease in the general population: changing prevalence and age distribution.
        Circulation. 2007; 115: 163-172
        • Ferencz C.
        • Rubin J.D.
        • McCarter R.J.
        • et al.
        Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study.
        Am J Epidemiol. 1985; 121: 31-36
        • Chaowu Y.
        • Hua L.
        • Xin S.
        Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model.
        Circulation. 2016; 133: e608-e610
        • Bartel T.
        • Rivard A.
        • Jimenez A.
        • Edris A.
        Three-dimensional printing for quality management in device closure of interatrial communications.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 1069
        • Valverde I.
        • Gomez G.
        • Coserria J.F.
        • et al.
        3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia.
        Catheter Cardiovasc Interv. 2015; 85: 1006-1012
        • Otton J.M.
        • Spina R.
        • Sulas R.
        • et al.
        Left atrial appendage closure guided by personalized 3D-printed cardiac reconstruction.
        JACC Cardiovasc Interv. 2015; 8: 1004-1006
        • Fan Y.
        • Kwok K.W.
        • Zhang Y.
        • et al.
        Three-dimensional printing for planning occlusion procedure for a double-lobed left atrial appendage.
        Circ Cardiovasc Interv. 2016; 9: e003561