Advertisement
Canadian Journal of Cardiology

Role of Computational Modelling in Planning and Executing Interventional Procedures for Congenital Heart Disease

  • Timothy C. Slesnick
    Correspondence
    Corresponding author: Dr Timothy C. Slesnick, Emory University School of Medicine, Children's Healthcare of Atlanta, 1405 Clifton Road, Atlanta, GA 30322. Tel.: +1-404-256-2593; fax: +1-770-488-9010.
    Affiliations
    Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
    Search for articles by this author

      Abstract

      Increasingly, computational modelling and numerical simulations are used to help plan complex surgical and interventional cardiovascular procedures in children and young adults with congenital heart disease. From its origins more than 30 years ago, surgical planning with analysis of flow hemodynamics and energy loss/efficiency has helped design and implement many modifications to existing techniques. On the basis of patient-specific medical imaging, surgical planning allows accurate model production that can then be manipulated in a virtual surgical environment, with the proposed solutions finally tested with advanced computational fluid dynamics to evaluate the results. Applications include a broad range of congenital heart disease, including patients with single-ventricle anatomy undergoing staged palliation, those with arch obstruction, with double outlet right ventricle, or with tetralogy of Fallot. In the present work, we focus on clinical applications of this exciting field. We describe the framework for these techniques, including brief descriptions of the engineering principles applied and the interaction between “benchtop” data with medical decision-making. We highlight some early insights learned from pioneers over the past few decades, including refinements in Fontan baffle geometries and configurations. Finally, we offer a glimpse into exciting advances that are presently being explored, including use of modelling for transcatheter interventions. In this era of personalized medicine, computational modelling and surgical planning allows patient-specific tailoring of interventions to optimize clinical outcomes.

      Résumé

      La modélisation computationnelle et les simulations numériques sont de plus en plus utilisées pour planifier des interventions chirurgicales cardiovasculaires complexes chez les enfants et les jeunes adultes atteints de cardiopathie congénitale. Depuis ses origines, il y a plus de 30 ans, la planification chirurgicale par l'analyse de l'hémodynamique des écoulements et de l'efficacité ou des déperditions d'énergie des écoulements a contribué à concevoir et à mettre en œuvre de nombreuses modifications aux techniques existantes. En s'appuyant sur l'imagerie médicale se rapportant au patient, la planification chirurgicale permet la production de modèles précis qui peuvent ensuite être manipulés dans un environnement chirurgical virtuel. L’évaluation finale des résultats des solutions proposées est effectuée au moyen de tests de dynamique des fluides computationnelle avancée. Les applications touchent une large gamme de patients atteints de maladies cardiaques congénitales, dont les patients ayant un cœur univentriculaire et recevant des interventions palliatives en plusieurs temps, une obstruction de l'arc, un ventricule droit à double issue, ou encore une tétralogie de Fallot. Dans le présent travail, nous nous attardons aux applications cliniques de ce domaine passionnant. Nous décrivons le cadre dans lequel s'inscrivent ces techniques, et présentons notamment une brève description des principes d'ingénierie qui sont appliqués et de l'interaction entre les données de laboratoire et la prise de décision médicale. Nous mettons en relief quelques leçons tirées par les pionniers au cours des dernières décennies, dont les améliorations dans les géométries et les configurations des dérivations de type Fontan. Enfin, nous proposons un aperçu des passionnants progrès actuels, et notamment de l'utilisation de la modélisation pour les interventions transcathéter. À l'ère de la médecine personnalisée, la modélisation et la planification chirurgicale computationnelles rendent possibles des interventions personnalisées qui optimisent les résultats cliniques.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • van der Linde D.
        • Konings E.E.
        • Slager M.A.
        • et al.
        Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis.
        J Am Coll Cardiol. 2011; 58: 2241-2247
        • Irvine B.
        • Luo W.
        • Leon J.A.
        Congenital anomalies in Canada 2013: a perinatal health surveillance report by the Public Health Agency of Canada’s Canadian Perinatal Surveillance System.
        Health Promot Chronic Dis Prev Can. 2015; 35: 21-22
        • Gross R.
        • Hubbard J.
        Surgical ligation of a patent ductus arteriosus: report of first successful case.
        Am Med Assoc J. 1939; 112: 729-731
        • Mery C.M.
        • Guzman-Pruneda F.A.
        • Trost Jr., J.G.
        • et al.
        Contemporary results of aortic coarctation repair through left thoracotomy.
        Ann Thorac Surg. 2015; 100: 1039-1046
        • De Leon L.E.
        • McKenzie E.D.
        Aortic arch advancement and ascending sliding arch aortoplasty for repair of complex primary and recurrent aortic arch obstruction.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2017; 20: 63-66
        • Fontan F.
        • Baudet E.
        Surgical repair of tricuspid atresia.
        Thorax. 1971; 26: 240-248
        • Rashkind W.J.
        • Miller W.W.
        Creation of an atrial septal defect without thoracotomy. A palliative approach to complete transposition of the great arteries.
        JAMA. 1966; 196: 991-992
        • Bonhoeffer P.
        • Boudjemline Y.
        • Saliba Z.
        • et al.
        Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction.
        Lancet. 2000; 356: 1403-1405
        • Gilboa S.M.
        • Devine O.J.
        • Kucik J.E.
        • et al.
        Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010.
        Circulation. 2016; 134: 101-109
        • Fogel M.A.
        • Khiabani R.H.
        • Yoganathan A.
        Imaging for preintervention planning: pre- and post-Fontan procedures.
        Circ Cardiovasc Imaging. 2013; 6: 1092-1101
        • Marsden A.L.
        Simulation based planning of surgical interventions in pediatric cardiology.
        Phys Fluids (1994). 2013; 25: 101303
        • Morris P.D.
        • Narracott A.
        • von Tengg-Kobligk H.
        • et al.
        Computational fluid dynamics modelling in cardiovascular medicine.
        Heart. 2016; 102: 18-28
        • Rappaport B.
        • Mellon R.D.
        • Simone A.
        • Woodcock J.
        Defining safe use of anesthesia in children.
        N Engl J Med. 2011; 364: 1387-1390
        • Rappaport B.A.
        • Suresh S.
        • Hertz S.
        • Evers A.S.
        • Orser B.A.
        Anesthetic neurotoxicity–clinical implications of animal models.
        N Engl J Med. 2015; 372: 796-797
        • Greeley W.J.
        • Ungerleider R.M.
        Assessing the effect of cardiopulmonary bypass on the brain.
        Ann Thorac Surg. 1991; 52: 417-419
        • Wypij D.
        • Newburger J.W.
        • Rappaport L.A.
        • et al.
        The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston circulatory arrest trial.
        J Thorac Cardiovasc Surg. 2003; 126: 1397-1403
        • Pekkan K.
        • de Zelicourt D.
        • Ge L.
        • et al.
        Physics-driven CFD modeling of complex anatomical cardiovascular flows-a Tcpc case study.
        Ann Biomed Eng. 2005; 33: 284-300
        • Tariq U.
        • Hsiao A.
        • Alley M.
        • et al.
        Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI.
        J Magn Reson Imaging. 2013; 37: 1419-1426
        • Frakes D.H.
        • Conrad C.P.
        • Healy T.M.
        • et al.
        Application of an adaptive control grid interpolation technique to morphological vascular reconstruction.
        IEEE Trans Biomed Eng. 2003; 50: 197-206
        • Frakes D.H.
        • Smith M.J.
        • Parks J.
        • et al.
        New techniques for the reconstruction of complex vascular anatomies from MRI images.
        J Cardiovasc Magn Reson. 2005; 7: 425-432
        • Pekkan K.
        • Whited B.
        • Kanter K.
        • et al.
        Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM).
        Med Biol Eng Comput. 2008; 46: 1139-1152
        • Haggerty C.M.
        • de Zelicourt D.A.
        • Restrepo M.
        • et al.
        Comparing pre- and post-operative Fontan hemodynamic simulations: implications for the reliability of surgical planning.
        Ann Biomed Eng. 2012; 40: 2639-2651
        • Luffel M.
        • Sati M.
        • Rossignac J.
        • et al.
        SURGEM: a solid modeling tool for planning and optimizing pediatric heart surgery.
        Comput Aided Des. 2016; 70: 3-12
        • Tang E.
        • Haggerty C.M.
        • Khiabani R.H.
        • et al.
        Numerical and experimental investigation of pulsatile hemodynamics in the total cavopulmonary connection.
        J Biomech. 2013; 46: 373-382
        • Mirabella L.
        • Haggerty C.M.
        • Passerini T.
        • et al.
        Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions.
        Int J Numer Method Biomed Eng. 2013; 29: 197-216
        • Baretta A.
        • Corsini C.
        • Yang W.
        • et al.
        Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case.
        Philos Trans A Math Phys Eng Sci. 2011; 369: 4316-4330
        • Tree M.
        • Wei Z.A.
        • Munz B.
        • et al.
        A method for in vitro TCPC compliance verification.
        J Biomech Eng. 2017; 139: 064502-1-5
        • Powell A.J.
        • Maier S.E.
        • Chung T.
        • Geva T.
        Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation.
        Pediatr Cardiol. 2000; 21: 104-110
        • Powell A.J.
        • Geva T.
        Blood flow measurement by magnetic resonance imaging in congenital heart disease.
        Pediatr Cardiol. 2000; 21: 47-58
        • Srivastava D.
        • Preminger T.
        • Lock J.E.
        • et al.
        Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease.
        Circulation. 1995; 92: 1217-1222
        • Kim S.J.
        • Bae E.J.
        • Lee J.Y.
        • et al.
        Inclusion of hepatic venous drainage in patients with pulmonary arteriovenous fistulas.
        Ann Thorac Surg. 2009; 87: 548-553
        • Sundareswaran K.S.
        • Haggerty C.M.
        • de Zelicourt D.
        • et al.
        Visualization of flow structures in Fontan patients using 3-dimensional phase contrast magnetic resonance imaging.
        J Thorac Cardiovasc Surg. 2012; 143: 1108-1116
        • Restrepo M.
        • Luffel M.
        • Sebring J.
        • et al.
        Surgical planning of the total cavopulmonary connection: robustness analysis.
        Ann Biomed Eng. 2015; 43: 1321-1334
        • Higgins C.B.
        • Holt W.
        • Pflugfelder P.
        • Sechtem U.
        Functional evaluation of the heart with magnetic resonance imaging.
        Magn Reson Med. 1988; 6: 121-139
        • Foker J.E.
        • Berry J.M.
        • Vinocur J.M.
        • Harvey B.A.
        • Pyles L.A.
        Two-ventricle repairs in the unbalanced atrioventricular canal defect spectrum with midterm follow-up.
        J Thorac Cardiovasc Surg. 2013; 146: 854-860.e853
        • Grosse-Wortmann L.
        • Yun T.J.
        • Al-Radi O.
        • et al.
        Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging.
        J Thorac Cardiovasc Surg. 2008; 136: 1429-1436
        • de Leval M.R.
        • Kilner P.
        • Gewillig M.
        • Bull C.
        Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience.
        J Thorac Cardiovasc Surg. 1988; 96: 682-695
        • Marcelletti C.
        • Corno A.
        • Giannico S.
        • Marino B.
        Inferior vena cava-pulmonary artery extracardiac conduit. A new form of right heart bypass.
        J Thorac Cardiovasc Surg. 1990; 100: 228-232
        • Hsia T.Y.
        • Migliavacca F.
        • Pittaccio S.
        • et al.
        Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections.
        J Surg Res. 2004; 116: 305-313
        • Sharma S.
        • Goudy S.
        • Walker P.
        • et al.
        In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle.
        J Am Coll Cardiol. 1996; 27: 1264-1269
        • Amodeo A.
        • Grigioni M.
        • Oppido G.
        • et al.
        The beneficial vortex and best spatial arrangement in total extracardiac cavopulmonary connection.
        J Thorac Cardiovasc Surg. 2002; 124: 471-478
        • Ensley A.E.
        • Lynch P.
        • Chatzimavroudis G.P.
        • et al.
        Toward designing the optimal total cavopulmonary connection: an in vitro study.
        Ann Thorac Surg. 1999; 68: 1384-1390
        • Haggerty C.M.
        • Restrepo M.
        • Tang E.
        • et al.
        Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis.
        J Thorac Cardiovasc Surg. 2014; 148: 1481-1489
        • Khiabani R.H.
        • Whitehead K.K.
        • Han D.
        • et al.
        Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC.
        Heart. 2015; 101: 139-143
        • Soerensen D.D.
        • Pekkan K.
        • de Zelicourt D.
        • et al.
        Introduction of a new optimized total cavopulmonary connection.
        Ann Thorac Surg. 2007; 83: 2182-2190
        • Yang W.
        • Vignon-Clementel I.E.
        • Troianowski G.
        • et al.
        Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study.
        J Thorac Cardiovasc Surg. 2012; 143: 1086-1097
        • Goksel O.S.
        • Tireli E.
        • Sungur Z.
        • et al.
        Use of a bifurcated EPTFE graft for off-pump extracardiac Fontan completion.
        Thorac Cardiovasc Surg. 2007; 55: 324-325
        • Sundareswaran K.S.
        • de Zelicourt D.
        • Sharma S.
        • et al.
        Correction of pulmonary arteriovenous malformation using image-based surgical planning.
        JACC Cardiovasc Imaging. 2009; 2: 1024-1030
        • Dasi L.P.
        • Krishnankuttyrema R.
        • Kitajima H.D.
        • et al.
        Fontan hemodynamics: importance of pulmonary artery diameter.
        J Thorac Cardiovasc Surg. 2009; 137: 560-564
        • Marsden A.L.
        • Bernstein A.J.
        • Reddy V.M.
        • et al.
        Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics.
        J Thorac Cardiovasc Surg. 2009; 137: 394-403.e392
        • Kanter K.R.
        • Haggerty C.M.
        • Restrepo M.
        • et al.
        Preliminary clinical experience with a bifurcated Y-graft Fontan procedure–a feasibility study.
        J Thorac Cardiovasc Surg. 2012; 144: 383-389
        • Trusty P.M.
        • Restrepo M.
        • Kanter K.R.
        • et al.
        A pulsatile hemodynamic evaluation of the commercially available bifurcated Y-graft Fontan modification and comparison with the lateral tunnel and extracardiac conduits.
        J Thorac Cardiovasc Surg. 2016; 151: 1529-1536
        • Bhatla P.
        • Tretter J.T.
        • Ludomirsky A.
        • et al.
        Utility and scope of rapid prototyping in patients with complex muscular ventricular septal defects or double-outlet right ventricle: does it alter management decisions?.
        Pediatr Cardiol. 2017; 38: 103-114
        • Hoffman J.I.
        • Kaplan S.
        The incidence of congenital heart disease.
        J Am Coll Cardiol. 2002; 39: 1890-1900
        • O’Laughlin M.P.
        • Perry S.B.
        • Lock J.E.
        • Mullins C.E.
        Use of endovascular stents in congenital heart disease.
        Circulation. 1991; 83: 1923-1939
        • Wood N.B.
        • Weston S.J.
        • Kilner P.J.
        • Gosman A.D.
        • Firmin D.N.
        Combined MR imaging and CFD simulation of flow in the human descending aorta.
        J Magn Reson Imaging. 2001; 13: 699-713
        • Pekkan K.
        • Dasi L.P.
        • Nourparvar P.
        • et al.
        In vitro hemodynamic investigation of the embryonic aortic arch at late gestation.
        J Biomech. 2008; 41: 1697-1706
        • von Knobelsdorff-Brenkenhoff F.
        • Karunaharamoorthy A.
        • Trauzeddel R.F.
        • et al.
        Evaluation of aortic blood flow and wall shear stress in aortic stenosis and its association with left ventricular remodeling.
        Circ Cardiovasc Imaging. 2016; 9: e004038
        • LaDisa Jr., J.F.
        • Dholakia R.J.
        • Figueroa C.A.
        • et al.
        Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis.
        Congenit Heart Dis. 2011; 6: 432-443
        • Olivieri L.J.
        • de Zelicourt D.A.
        • Haggerty C.M.
        • et al.
        Hemodynamic modeling of surgically repaired coarctation of the aorta.
        Cardiovasc Eng Technol. 2011; 2: 288-295
        • Cosentino D.
        • Capelli C.
        • Derrick G.
        • et al.
        Patient-specific computational models to support interventional procedures: a case study of complex aortic re-coarctation.
        EuroIntervention. 2015; 11: 669-672
        • Goubergrits L.
        • Riesenkampff E.
        • Yevtushenko P.
        • et al.
        MRI-based computational fluid dynamics for diagnosis and treatment prediction: clinical validation study in patients with coarctation of aorta.
        J Magn Reson Imaging. 2015; 41: 909-916
        • Ralovich K.
        • Itu L.
        • Vitanovski D.
        • et al.
        Noninvasive hemodynamic assessment, treatment outcome prediction and follow-up of aortic coarctation from MR imaging.
        Med Phys. 2015; 42: 2143-2156
        • Neugebauer M.
        • Glockler M.
        • Goubergrits L.
        • et al.
        Interactive virtual stent planning for the treatment of coarctation of the aorta.
        Int J Comput Assist Radiol Surg. 2016; 11: 133-144
        • Rao A.S.
        • Menon P.G.
        Presurgical planning using image-based in silico anatomical and functional characterization of tetralogy of fallot with associated anomalies.
        Interact Cardiovasc Thorac Surg. 2015; 20: 149-156
        • Zhang W.
        • Liu J.
        • Yan Q.
        • et al.
        Computational haemodynamic analysis of left pulmonary artery angulation effects on pulmonary blood flow.
        Interact Cardiovasc Thorac Surg. 2016; 23: 519-525
        • Geva T.
        Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support.
        J Cardiovasc Magn Reson. 2011; 13: 9
        • Hsia T.Y.
        • Figliola R.
        • Modeling of Congenital Hearts Alliance (MOCHA) Investigators; Modeling of Congenital Hearts Alliance MOCHA Investigators
        Multiscale modelling of single-ventricle hearts for clinical decision support: a Leducq Transatlantic Network of Excellence.
        Eur J Cardiothorac Surg. 2016; 49: 365-368