Abstract
Background
Methods
Results
Conclusions
Résumé
Contexte
Méthodologie
Résultats
Conclusions
- Piepoli M.F.
- Hoes A.W.
- Agewall S.
- et al.
Methods
Study population and design
CESP (Center for research in Epidemiology and Population Health), INSERM (French National Institute of Health and Medical Research) – Paris-Sud University. Implementation of edict n° 98–37. Available at: http://cesp.vjf.inserm.fr/svcd. Accessed June 8, 2017.
Questionnaires, measurements of clinical parameters, and laboratory methods
Score of adherence to 2016 European CV prevention guidelines
- Piepoli M.F.
- Hoes A.W.
- Agewall S.
- et al.
- Piepoli M.F.
- Hoes A.W.
- Agewall S.
- et al.
Statistical analysis
Results
Total (N = 1311) | Q1 (n = 344) | Q2 (n = 339) | Q3 (n = 308) | Q4 (n = 320) | P | |
---|---|---|---|---|---|---|
Age | 0.0004 | |||||
35-44 years | 253 (19.3) | 93 (27.0) | 66 (19.5) | 41 (13.3) | 53 (16.6) | |
45-54 years | 547 (41.7) | 141 (41.0) | 137 (40.4) | 133 (43.2) | 136 (42.5) | |
55-64 years | 511 (39.0) | 110 (32.0) | 136 (40.1) | 134 (43.5) | 131 (40.9) | |
Men | 957 (73.0) | 199 (57.8) | 238 (70.2) | 245 (79.5) | 275 (85.9) | |
Centre | < 0.0001 | |||||
Northeastern France | 694 (52.9) | 213 (61.9) | 178 (52.5) | 152 (49.4) | 151 (47.2) | |
Southwestern France | 314 (24.0) | 83 (24.1) | 84 (24.8) | 80 (26.0) | 67 (20.9) | |
Northern France | 303 (23.1) | 48 (14.0) | 77 (22.7) | 76 (24.7) | 102 (31.9) | |
Educational level < high school completion | 888 (67.7) | 217 (63.1) | 220 (64.9) | 205 (66.6) | 246 (76.9) | 0.0006 |
Antihypertensive drug treatment | 206 (15.7) | 32 (9.3) | 48 (14.2) | 63 (20.5) | 63 (19.7) | 0.0001 |
Lipid-lowering drug treatment | 162 (12.4) | 31 (9.0) | 45 (13.3) | 48 (15.6) | 38 (11.9) | 0.0768 |
Hypoglycemic drug | 51 (3.9) | 7 (2.0) | 13 (3.8) | 14 (4.5) | 17 (5.3) | 0.1540 |


N = 1311 | Cardiovascular mortality (n = 41) | All-cause mortality (n = 186) | ||||||
---|---|---|---|---|---|---|---|---|
Events, n | Adjusted HR | 95% CI | P | Event, n | AdjustedHR | 95% CI | P | |
Q1 (n = 344) | 5 | 1.00 | 32 | 1.00 | ||||
Q2 (n = 339) | 7 | 1.11 | 0.35-3.49 | 0.858 | 41 | 1.04 | 0.65-1.66 | 0.860 |
Q3 (n = 308) | 7 | 1.13 | 0.36-3.58 | 0.830 | 32 | 0.81 | 0.49-1.33 | 0.407 |
Q4 (n = 320) | 22 | 3.40 | 1.24-9.31 | 0.017 | 81 | 2.14 | 1.40-3.27 | < 0.001 |
P value for trend | 0.010 | < 0.001 | ||||||
Q1-2-3 (n = 991) | 19 | 1.00 | 105 | 1.00 | ||||
Q4 (n = 320) | 22 | 3.12 | 1.62-6.01 | 0.001 | 81 | 2.27 | 1.68-3.06 | < 0.001 |
Discussion
- Piepoli M.F.
- Hoes A.W.
- Agewall S.
- et al.
- Piepoli M.F.
- Hoes A.W.
- Agewall S.
- et al.
Acknowledgements
Funding Sources
Disclosures
Supplementary Material
- Supplementary Material
References
- Combined impact of health behaviours and mortality in men and women: the EPIC-Norfolk prospective population study.PLoS Med. 2008; 5: e12
- Influence of individual and combined health behaviors on total and cause-specific mortality in men and women: the United Kingdom health and lifestyle survey [erratum in: 2010;170:998].Arch Intern Med. 2010; 170: 711-718
- The combined impact of adherence to five lifestyle factors on all-cause, cancer and cardiovascular mortality: a prospective cohort study among Danish men and women.Br J Nutr. 2015; 113: 849-858
- The combined effects of healthy lifestyle behaviors on all cause mortality: a systematic review and meta-analysis.Prev Med. 2012; 55: 163-170
- Healthy lifestyle behaviors and decreased risk of mortality in a large prospective study of U.S. women and men.Eur J Epidemiol. 2013; 28: 361-372
- Seven modifiable lifestyle factors predict reduced risk for ischemic cardiovascular disease and all-cause mortality regardless of body mass index: a cohort study.Int J Cardiol. 2013; 168: 946-952
- Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults.JAMA. 2012; 307: 1273-1283
- Adherence to cancer prevention guidelines and cancer incidence, cancer mortality, and total mortality: a prospective cohort study.Am J Clin Nutr. 2015; 101: 558-569
- 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR).Eur Heart J. 2016; 37: 2315-2381
- Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations.Lancet. 2000; 355: 675-687
- Change in cardiovascular risk factors in France, 1985-1997.Eur J Epidemiol. 2004; 19: 25-32
CESP (Center for research in Epidemiology and Population Health), INSERM (French National Institute of Health and Medical Research) – Paris-Sud University. Implementation of edict n° 98–37. Available at: http://cesp.vjf.inserm.fr/svcd. Accessed June 8, 2017.
- Ten-year risk of all-cause mortality: assessment of a risk prediction algorithm in a French general population.Eur J Epidemiol. 2011; 26: 359-368
- Prediction of coronary heart disease using risk factor categories.Circulation. 1998; 97: 1837-1847
- Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project.Eur Heart J. 2003; 24: 987-1003
- A proportional hazards model for the subdistribution of a competing risk.J Am Stat Assoc. 1999; 94: 496-509
- Sample Size Tables for Clinical Studies.3rd Ed. Wiley-Blackwell, Oxford2009
- Competing risk regression models for epidemiologic data.Am J Epidemiol. 2009; 170: 244-256
- A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions.J Clin Epidemiol. 2013; 66: 648-653
Article info
Publication history
Footnotes
See editorial by Anderson, pages 1221–1222 of this issue.
See page 1303 for disclosure information.