Advertisement
Canadian Journal of Cardiology

Valve Interventions in Utero: Understanding the Timing, Indications, and Approaches

  • Aleksander Sizarov
    Affiliations
    Cardiologie pédiatrique, Centre de Référence Malformations Cardiaques Congénitales Complexes, Hôpital Universitaire Necker Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
    Search for articles by this author
  • Younes Boudjemline
    Correspondence
    Corresponding author: Dr Younes Boudjemline, Cardiologie pédiatrique, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris cedex, France. Tel.: +33-1-44-49-43-57; fax: +33-1-44-49-5724.
    Affiliations
    Cardiologie pédiatrique, Centre de Référence Malformations Cardiaques Congénitales Complexes, Hôpital Universitaire Necker Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France

    Université Paris V Descartes, Paris, France
    Search for articles by this author

      Abstract

      Efficient use of fetal echocardiography has enabled early detection of congenital heart disease and of its often irreversible complications, such as ventricular hypoplasia in case of severe stenosis of the semilunar valves. Experience of the past 25 years has proved that balloon dilatation of the severely stenotic or atretic valve in fetuses as early as the 23rd week of gestation is technically feasible with a learning curve. Reported results regarding the ultimate biventricular circulation outcome after fetal valve intervention are at best controversial, with the desired improvements in the quality of life and cost-benefits of the postnatal treatment being as yet unconfirmed. Despite acute hemodynamic success with a relatively low rate of fetal complications, the number of suitable candidates for the fetal valve intervention remains low. High valvular tissue plasticity in the fetus and difficulties of assessing the point of no return of the myocardial damage often makes the success of fetal valve intervention short-lived and unpredictable. Hopefully, future refinements of the equipment, imaging, and biodegradable tissue regeneration materials will lead to better results of the fetal valve interventions beyond their technical success.

      Résumé

      L’efficacité de la détection échocardiographique des cardiopathies congénitales fœtales et de ces complications souvent irréversibles est en constante amélioration par exemple les des valves semi-lunaires peuvent évoluer vers l’hypoplasie du ventricule sous-jacent. L'expérience acquise depuis 25 ans a démontré que la dilatation par ballonnet de la valve sténosante ou atrétique est faisable chez un fœtus à partir de la 23ième semaine de gestation mais implique une courbe d'apprentissage. Compte tenu de la faible incidence de ces malformations, le nombre de candidats pour cette intervention est très faible. Le but ultime de cette procédure est d’éviter l’évolution du ventricule vers l’hypoplasie, le pronostic post-natal de ces cœurs univentriculaires étant sombres. Le pourcentage de nouveau-nés avec ultimement une circulation biventriculaire est loin d’être de 100% posant la question de la sélection des candidats et du timing de la procédure. Nombre de fœtus dilatés in utéro vont nécessiter une prise en charge agressive post-natale. Le rapport coût-bénéfice du traitement postnatal après les interventions fœtales n'a pas encore été déterminé. La haute plasticité des tissus valvulaires fœtaux, et les difficultés d'évaluation de l'irréversibilité des lésions myocardiques rendent souvent le succès de l'intervention fœtale de courte durée et imprévisible. On l’espère que les futurs perfectionnements de l'équipement, de l'imagerie et des matériaux de régénération des tissus biodégradables conduiront à de meilleurs résultats à long terme des interventions valvulaires fœtales.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Clur S.A.
        • Bilardo C.M.
        Early detection of fetal cardiac abnormalities: how effective is it?.
        Prenat Diagn. 2014; 34: 1235-1245
        • Maeno Y.
        • Himeno W.
        • Fujino H.
        • et al.
        Progression of congenital heart disease in the prenatal period.
        Pediatr Int. 1999; 41: 709-715
        • Maxwell D.
        • Allan L.
        • Tynan M.J.
        Balloon dilatation of the aortic valve in the fetus: a report of two cases.
        Br Heart J. 1991; 65: 256-258
        • Kohl T.
        • Sharland G.
        • Allan L.D.
        • et al.
        World experience of percutaneous ultrasound-guided balloon valvuloplasty in human fetuses with severe aortic valve obstruction.
        Am J Cardiol. 2000; 85: 1230-1233
        • Donofrio M.T.
        • Moon-Grady A.J.
        • Hornberger L.K.
        • et al.
        Diagnosis and treatment of fetal cardiac disease: a scientific statement.
        Circulation. 2014; 129: 2183-2242
        • Aikawa E.
        • Whittaker P.
        • Farber M.
        • et al.
        Human semilunar cardiac valve remodelling by activated cells from fetus to adult.
        Circulation. 2006; 113: 1344-1352
        • Gilbert-Barness E.
        • Debich-Spicer D.
        Congenital malformations of the heart.
        in: Gilbert-Barness E. Potter's Pathology of the Fetus, Infant and Child. 2nd Ed. Mosby Elsevier, Philadelphia2007: 987-1016
        • Hornberger L.K.
        • Sanders S.P.
        • Rein A.J.
        • et al.
        Left heart obstructive lesions and left ventricular growth in the midtrimester fetus.
        Circulation. 1995; 92: 1531-1538
        • Hornberger L.K.
        • Need L.
        • Benacerraf B.R.
        Development of significant left and right ventricular hypoplasia in the second and third trimester fetus.
        J Ultrasound Med. 1996; 15: 655-659
        • Simpson J.M.
        • Sharland G.K.
        Natural history and outcome of aortic stenosis diagnosed prenatally.
        Heart. 1997; 77: 205-210
        • Calder A.L.
        • Co E.E.
        • Sage M.D.
        Coronary arterial abnormalities in pulmonary atresia with intact ventricular septum.
        Am J Cardiol. 1987; 59: 436-442
        • Sathanandam S.
        • Cui W.
        • Nguyen N.V.
        • et al.
        Ventriculo-coronary artery connections with the hypoplastic left heart.
        Pediatr Cardiol. 2010; 31: 1176-1185
        • Sedmera D.
        • Thompson R.P.
        Myocyte proliferation in the developing heart.
        Dev Dyn. 2011; 240: 1322-1334
        • Mollova M.
        • Bersell K.
        • Walsh S.
        • et al.
        Cardiomyocyte proliferation contributes to heart growth in young humans.
        Proc Natl Acad Sci U S A. 2013; 110: 1446-1451
        • Hornberger L.K.
        • Barrea C.
        Diagnosis, natural history, and outcome of fetal heart disease.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2001; 1: 229-243
        • Taber L.A.
        • Chabert S.
        Theoretical and experimental study of growth and remodeling in the developing heart.
        Biomechan Model Mechanobiol. 2002; 1: 29-43
        • Freud L.R.
        • Moon-Grady A.
        • Escobar-Diaz M.C.
        • et al.
        Low rate of prenatal diagnosis among neonates with critical aortic stenosis.
        Ultrasound Obstet Gynecol. 2015; 45: 326-332
        • Marek J.
        • Tomek V.
        • Skovranek J.
        • et al.
        Prenatal ultrasound screening of congenital heart disease in an unselected national population.
        Heart. 2011; 97: 124-130
        • Vogel M.
        • McElhinney D.B.
        • Wilkins-Haug L.E.
        • et al.
        Aortic stenosis and severe mitral regurgitation in the fetus resulting in giant left atrium and hydrops.
        J Am Coll Cardiol. 2011; 57: 348-355
        • Tulzer G.
        • Arzt W.
        Fetal cardiac interventions: rationale, risk and benefit.
        Semin Fetal Neonatal Med. 2013; 18: 298-301
        • Mäkikallio K.
        • McElhinney D.B.
        • Levine J.C.
        • et al.
        Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome.
        Circulation. 2006; 113: 1401-1405
        • Gardiner H.M.
        • Kovacevic A.
        • Tulzer G.
        • et al.
        Natural history of 107 cases of fetal aortic stenosis: results from a European multicenter retrospective study.
        Ultrasound Obstet Gynecol. 2016; 48: 373-381
        • McElhinney D.B.
        • Marshall A.C.
        • Wilkins-Haug L.E.
        • et al.
        Predictors of technical success and postnatal biventricular outcome after in-utero aortic valvuloplasty.
        Circulation. 2009; 120: 1482-1490
        • Ferschl M.B.
        • Moon-Grady A.J.
        • Rollins M.D.
        • et al.
        Percutaneous fetal cardiac intervention for severe aortic stenosis and evolving hypoplastic left-heart syndrome.
        J Cardiothorac Vasc Anesth. 2016; 30: 1118-1128
        • Mizrahi-Arnaud A.
        • Tworetzky W.
        • Bulich L.A.
        • et al.
        Pathophysiology, management, and outcomes of fetal hemodynamic instability during prenatal cardiac intervention.
        Pediatr Res. 2007; 62: 325-330
        • Jaeggi E.
        • Renaud C.
        • Ryan G.
        • Chaturvedi R.
        Intrauterine therapy for structural congenital heart disease: contemporary results and Canadian experience.
        Trends Cardiovasc Med. 2016; 26: 639-646
        • Moon-Grady A.J.
        • Morris S.A.
        • Belfort M.
        • et al.
        International fetal cardiac intervention registry: a world-wide collaborative description and preliminary outcomes.
        J Am Coll Cardiol. 2015; 66: 388-399
        • Freud L.R.
        • McElhinney D.B.
        • Marshall A.C.
        • et al.
        Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients.
        Circulation. 2014; 130: 638-645
        • Pedra S.R.
        • Peralta C.F.
        • Crema L.
        • et al.
        Fetal interventions for congenital heart disease in Brazil.
        Pediatr Cardiol. 2014; 35: 399-405
        • Gardiner H.M.
        • Kovacevic A.
        • Mellander A.
        • et al.
        Does fetal aortic valvuloplasty alter outcomes in aortic valve stenosis? Results of a retrospective European multinational multicentre study [abstract #OC26.03].
        Ultrasound Obstet Gynecol. 2014; 44: 60
        • Marantz P.
        • Aiello H.
        • Grinenco S.
        • et al.
        Foetal aortic valvuloplasty: experience of five cases.
        Cardiol Young. 2013; 23: 675-681
        • Arzt W.
        • Wertaschnigg D.
        • Veit I.
        • et al.
        Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis.
        Ultrasound Obstet Gynecol. 2011; 37: 689-695
        • Goldstein B.H.
        • Fifer C.G.
        • Armstrong A.K.
        • et al.
        Use of a pressure guidewire in fetal cardiac intervention for critical aortic stenosis.
        Pediatrics. 2011; 128: e716-e719
        • Kohl T.
        • Breuer J.
        • Heep A.
        • et al.
        Fetal transesophageal echocardiography during balloon valvuloplasty for severe aortic valve stenosis.
        J Thorac Cardiovasc Surg. 2007; 134: 256-257
        • Matsui H.
        • Gardiner H.M.
        Fetal intervention for cardiac disease: the cutting edge of perinatal care.
        Sem Fetal Neonat Med. 2007; 12: 482-489
        • Suh E.
        • Quintessenza J.
        • Huhta J.
        • Quintero R.
        How to grow a heart: fiberoptic guided fetal aortic valvotomy.
        Cardiol Young. 2006; 16: 43-46
        • Huhta J.
        • Quintero R.A.
        • Suh E.
        • Bader R.
        Advances in fetal cardiac intervention.
        Curr Opin Cardiol. 2004; 29: 140-144
        • Kleinman C.S.
        Fetal cardiac intervention: innovative therapy or a technique in search of an indication?.
        Circulation. 2006; 113: 1378-1381
        • Emani S.M.
        • McElhinney D.B.
        • Tworetzky W.
        • et al.
        Staged left ventricular recruitment after single-ventricle palliation in patients with borderline left heart hypoplasia.
        J Am Coll Cardiol. 2012; 60: 1966-1974
        • Kalish B.T.
        • Banka P.
        • Lafranchi T.
        • et al.
        Biventricular conversion after single ventricle palliation in patients with small left heart structures.
        Ann Thorac Surg. 2013; 96: 1406-1412
        • Friedman K.G.
        • Freud L.
        • Escobar-Diaz M.
        • et al.
        Left ventricular remodeling and function in children with biventricular circulation after fetal aortic valvuloplasty.
        Pediatr Cardiol. 2015; 36: 1502-1509
        • Polat T.B.
        • Danısman N.
        Pulmonary valvulotomy in a fetus with pulmonary atresia with intact ventricular septum: first experience in Turkey.
        Images Paediatr Cardiol. 2012; 14: 6-11
        • Gomez-Montes E.
        • Herraiz I.
        • Mendoza A.
        • Galindo A.
        Fetal intervention in right outflow tract obstructive disease: selection of candidates and results.
        Cardiol Res Pract. 2012; 2012: 592403
        • Tworetzky W.
        • McElhinney D.B.
        • Marx G.R.
        • et al.
        In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes.
        Pediatrics. 2009; 124: e510-e518
        • Galindo A.
        • Gutierrez-Larraya F.
        • Velasco J.M.
        • de la Fuente P.
        Pulmonary balloon valvuloplasty in a fetus with critical pulmonary stenosis/atresia with intact ventricular septum and heart failure.
        Fetal Diagn Ther. 2006; 21: 100-104
        • Tulzer G.
        • Arzt W.
        • Franklin R.C.
        • et al.
        Fetal pulmonary valvuloplasty for critical pulmonary stenosis or atresia with intact septum.
        Lancet. 2002; 360: 1567-1568
        • Salvin J.W.
        • McElhinney D.B.
        • Colan S.D.
        • et al.
        Fetal tricuspid valve size and growth as predictors of outcome in pulmonary atresia with intact ventricular septum.
        Pediatrics. 2006; 118: e415-e420
        • Roman K.S.
        • Fouron J.C.
        • Nii M.
        • et al.
        Determinants of outcome in fetal pulmonary valve stenosis or atresia with intact ventricular septum.
        Am J Cardiol. 2007; 99: 699-703
        • Gardiner H.M.
        • Belmar C.
        • Tulzer G.
        • et al.
        Morphologic and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum.
        J Am Coll Cardiol. 2008; 51: 1299-1308
        • Kohl T.
        • Szabo Z.
        • Suda K.
        • et al.
        Transumbilical fetal cardiac catheterization in sheep.
        Circulation. 1997; 95: 1048-1053
        • Jouannic J.M.
        • Boudjemline Y.
        • Benifla J.L.
        • Bonnet D.
        Transhepatic ultrasound-guided cardiac catheterization in the fetal lamb.
        Circulation. 2005; 111: 736-741
        • Mallmann M.R.
        • Berg C.
        Referee commentaries.
        Ultrasound Obstet Gynecol. 2013; 42: 4
        • Nugent A.W.
        • Kowal R.C.
        • Juraszek A.L.
        • et al.
        Model of magnetically guided fetal cardiac intervention.
        J Matern Fetal Neonatal Med. 2013; 26: 1778-1781
        • Kohl T.
        • Suda K.
        • Reckers J.
        • et al.
        Fetal transesophageal echocardiography utilizing intravascular ultrasound catheter in sheep.
        Ultrasound Med Biol. 1999; 25: 939-946
        • Weber B.
        • Emmert M.Y.
        • Behr L.
        • et al.
        Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation.
        Biomaterials. 2012; 33: 4031-4043
        • Kluin J.
        • Talacua H.
        • Smits A.I.
        • et al.
        In situ heart valve tissue engineering using a bioresorbable elastomeric implant.
        Biomaterials. 2017; 125: 101-117