Advertisement
Canadian Journal of Cardiology
Review| Volume 34, ISSUE 3, P244-251, March 2018

Download started.

Ok

Radiotherapy for Patients with Cardiovascular Implantable Electronic Devices: A Review

Published:December 05, 2017DOI:https://doi.org/10.1016/j.cjca.2017.11.023

      Abstract

      Because cardiovascular implantable electronic devices are increasingly indicated in older patients, and the burden of cancer is rising with the growth and aging of the world population, the management of patients with cardiac devices who require radiotherapy for cancer treatment is a timely concern. Device malfunctions might occur in as high as 3% of radiotherapy courses, posing a substantial issue in clinical practice. A nonsystematic comprehensive review was undertaken. We searched PubMed and the MEDLINE database for randomized controlled trials, meta-analyses, systematic reviews, observational studies, in vitro/in vivo studies, and case reports. Articles were selected by 2 independent reviewers, and emphasis was given to information of interest to a general medical readership. The pathophysiology and predictors of cardiovascular implantable electronic device malfunction due to radiotherapy are reviewed, recommendations for the management of patients with such devices undergoing radiotherapy are summarized, and the clinical significance and future directions of this field are discussed. Radiotherapy-induced device malfunctions are rare, but because of the potential complications, the development of evidence-based guidelines for the management of patients with cardiovascular implantable electronic devices undergoing radiotherapy is a timely concern.

      Résumé

      Puisque les dispositifs cardiovasculaires électroniques implantables sont de plus en plus recommandés chez les patients âgés et que le fardeau du cancer augmente avec la croissance et l’âge de la population, la prise en charge des patients porteurs de dispositifs cardiaques qui ont besoin de radiothérapie pour traiter un cancer constitue un problème bien actuel. Le mauvais fonctionnement des dispositifs qui représenterait jusqu’à 3 % des séances de radiothérapie pose un problème de taille dans la pratique clinique. Nous avons réalisé une revue exhaustive, mais non systématique. Nous avons effectué des recherches dans les banques de données PubMed et MEDLINE pour relever des essais cliniques à répartition aléatoire, des méta-analyses, des revues systématiques, des études observationnelles, des études in vitro et in vivo et des observations. Deux examinateurs indépendants ont sélectionné les articles et ont porté leur attention sur les informations qui suscitent l’intérêt d’un lectorat de médecins généralistes. Nous passons en revue la physiopathologie et les prédicteurs du mauvais fonctionnement des dispositifs cardiovasculaires électroniques implantables dû à la radiothérapie, nous faisons la synthèse des recommandations sur la prise en charge des patients porteurs de ces dispositifs qui subissent de la radiothérapie a été réalisée et nous examinons l’importance clinique et des orientations futures dans ce domaine. Les mauvais fonctionnements induits par la radiothérapie sont rares, mais en raison des complications potentielles, l’élaboration de lignes directrices fondées sur les données probantes en matière de prise en charge des patients porteurs d’un dispositif cardiovasculaire électronique implantable qui subissent de la radiothérapie constitue un problème bien actuel.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mond H.G.
        • Proclemer A.
        The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009–a World Society of Arrhythmia's project.
        Pacing Clin Electrophysiol. 2011; 34: 1013-1027
        • Torre L.A.
        • Bray F.
        • Siegel R.L.
        • et al.
        Global cancer statistics, 2012.
        CA Cancer J Clin. 2015; 65: 87-108
        • Brambatti M.
        • Mathew R.
        • Strang B.
        • et al.
        Management of patients with implantable cardioverter-defibrillators and pacemakers who require radiation therapy.
        Heart Rhythm. 2015; 12: 2148-2154
        • Kurtz S.M.
        • Ochoa J.A.
        • Lau E.
        • et al.
        Implantation trends and patient profiles for pacemakers and implantable cardioverter defibrillators in the United States: 1993-2006.
        Pacing Clin Electrophysiol. 2010; 33: 705-711
        • Gossman M.S.
        • Wilkinson J.D.
        • Mallick A.
        Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: retrospective physician surveys including chart reviews at numerous centers.
        Med Dosim. 2014; 39: 320-324
        • Zaremba T.
        • Jakobsen A.R.
        • Sogaard M.
        • Thogersen A.M.
        • Riahi S.
        Radiotherapy in patients with pacemakers and implantable cardioverter defibrillators: a literature review.
        Europace. 2016; 18: 479-491
        • Munshi A.
        • Agarwal J.P.
        • Pandey K.C.
        Cancer patients with cardiac pacemakers needing radiation treatment: a systematic review.
        J Cancer Res Ther. 2013; 9: 193-198
        • Indik J.H.
        • Gimbel J.R.
        • Abe H.
        • et al.
        2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices.
        Heart Rhythm. 2017; 14: e97-e153
        • Last A.
        Radiotherapy in patients with cardiac pacemakers.
        Br J Radiol. 1998; 71: 4-10
        • Lewin A.A.
        • Serago C.F.
        • Schwade J.G.
        • Abitbol A.A.
        • Margolis S.C.
        Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication.
        Int J Radiat Oncol Biol Phys. 1984; 10: 1967-1969
      1. Baumann R, Hossain T, Murata S, Kitagawa H. Boron compounds as a dominant source of alpha-particles in semiconductor devices. 1995 IEEE International Reliability Physics Proceedings, 33rd Annual 1995:297-302.

        • Grant J.D.
        • Jensen G.L.
        • Tang C.
        • et al.
        Radiotherapy-induced malfunction in contemporary cardiovascular implantable electronic devices: clinical incidence and predictors.
        JAMA Oncol. 2015; 1: 624-632
        • Yerra L.
        • Reddy P.C.
        Effects of electromagnetic interference on implanted cardiac devices and their management.
        Cardiol Rev. 2007; 15: 304-309
        • Hurkmans C.W.
        • Scheepers E.
        • Springorum B.G.
        • Uiterwaal H.
        Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators.
        Int J Radiat Oncol Biol Phys. 2005; 63: 282-289
        • Zaremba T.
        • Jakobsen A.R.
        • Thogersen A.M.
        • Riahi S.
        • Kjaergaard B.
        Effects of high-dose radiotherapy on implantable cardioverter defibrillators: an in vivo porcine study.
        Pacing Clin Electrophysiol. 2013; 36: 1558-1563
        • Elders J.
        • Kunze-Busch M.
        • Jan Smeenk R.
        • Smeets J.L.
        High incidence of implantable cardioverter defibrillator malfunctions during radiation therapy: neutrons as a probable cause of soft errors.
        Europace. 2013; 15: 60-65
        • Tajstra M.
        • Gadula-Gacek E.
        • Buchta P.
        • et al.
        Effect of therapeutic ionizing radiation on implantable electronic devices: systematic review and practical guidance.
        J Cardiovasc Electrophysiol. 2016; 27: 1247-1251
        • Kapa S.
        • Fong L.
        • Blackwell C.R.
        • et al.
        Effects of scatter radiation on ICD and CRT function.
        Pacing Clin Electrophysiol. 2008; 31: 727-732
        • Zecchin M.
        • Morea G.
        • Severgnini M.
        • et al.
        Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data.
        Europace. 2016; 18: 288-293
        • Augustynek M.
        • Korpas D.
        • Penhaker M.
        • Cvek J.
        • Binarova A.
        Monitoring of CRT-D devices during radiation therapy in vitro.
        Biomed Eng Online. 2016; 15: 29
        • Mouton J.
        • Haug R.
        • Bridier A.
        • Dodinot B.
        • Eschwege F.
        Influence of high-energy photon beam irradiation on pacemaker operation.
        Phys Med Biol. 2002; 47: 2879-2893
        • Tsekos A.
        • Momm F.
        • Brunner M.
        • Guttenberger R.
        The cardiac pacemaker patient–might the pacer be directly irradiated?.
        Acta Oncol. 2000; 39: 881-883
        • Gauter-Fleckenstein B.
        • Israel C.W.
        • Dorenkamp M.
        • et al.
        DEGRO/DGK guideline for radiotherapy in patients with cardiac implantable electronic devices.
        Strahlenther Onkol. 2015; 191: 393-404
        • Tondato F.
        • Ng D.W.
        • Srivathsan K.
        • et al.
        Radiotherapy-induced pacemaker and implantable cardioverter defibrillator malfunction.
        Expert Rev Med Devices. 2009; 6: 243-249
        • Zaremba T.
        • Jakobsen A.R.
        • Sogaard M.
        • et al.
        Risk of device malfunction in cancer patients with implantable cardiac device undergoing radiotherapy: a population-based cohort study.
        Pacing Clin Electrophysiol. 2015; 38: 343-356
        • Quertermous T.
        • Megahy M.S.
        • Das Gupta D.S.
        • Griem M.L.
        Pacemaker failure resulting from radiation damage.
        Radiology. 1983; 148: 257-258
        • Pourhamidi A.H.
        Radiation effect on implanted pacemakers.
        Chest. 1983; 84: 499-500
        • Lee R.W.
        • Huang S.K.
        • Mechling E.
        • Bazgan I.
        Runaway atrioventricular sequential pacemaker after radiation therapy.
        Am J Med. 1986; 81: 883-886
        • Zweng A.
        • Schuster R.
        • Hawlicek R.
        • Weber H.S.
        Life-threatening pacemaker dysfunction associated with therapeutic radiation: a case report.
        Angiology. 2009; 60: 509-512
        • Nemec J.
        Runaway implantable defibrillator–a rare complication of radiation therapy.
        Pacing Clin Electrophysiol. 2007; 30: 716-718
        • Bagur R.
        • Chamula M.
        • Brouillard E.
        • et al.
        Radiotherapy-induced cardiac implantable electronic device dysfunction in patients with cancer.
        Am J Cardiol. 2017; 119: 284-289
        • Makkar A.
        • Prisciandaro J.
        • Agarwal S.
        • et al.
        Effect of radiation therapy on permanent pacemaker and implantable cardioverter-defibrillator function.
        Heart Rhythm. 2012; 9: 1964-1968
        • Zaremba T.
        • Jakobsen A.R.
        • Thogersen A.M.
        • Oddershede L.
        • Riahi S.
        The effect of radiotherapy beam energy on modern cardiac devices: an in vitro study.
        Europace. 2014; 16: 612-616
        • Hashimoto T.
        • Isobe T.
        • Hashii H.
        • et al.
        Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators.
        Radiat Oncol. 2012; 7: 10
        • Gelblum D.Y.
        • Amols H.
        Implanted cardiac defibrillator care in radiation oncology patient population.
        Int J Radiat Oncol Biol Phys. 2009; 73: 1525-1531
        • Prisciandaro J.I.
        • Makkar A.
        • Fox C.J.
        • et al.
        Dosimetric review of cardiac implantable electronic device patients receiving radiotherapy.
        J Appl Clin Med Phys. 2015; 16: 5189
        • Hashii H.
        • Hashimoto T.
        • Okawa A.
        • et al.
        Comparison of the effects of high-energy photon beam irradiation (10 and 18 MV) on 2 types of implantable cardioverter-defibrillators.
        Int J Radiat Oncol Biol Phys. 2013; 85: 840-845
        • Marbach J.R.
        • Sontag M.R.
        • Van Dyk J.
        • Wolbarst A.B.
        Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM Task Group No. 34. American Association of Physicists in Medicine.
        Med Phys. 1994; 21: 85-90
        • Hurkmans C.W.
        • Scheepers E.
        • Springorum B.G.
        • Uiterwaal H.
        Influence of radiotherapy on the latest generation of pacemakers.
        Radiother Oncol. 2005; 76: 93-98
        • Soejima T.
        • Yoden E.
        • Nishimura Y.
        • et al.
        Radiation therapy in patients with implanted cardiac pacemakers and implantable cardioverter defibrillators: a prospective survey in Japan.
        J Radiat Res. 2011; 52: 516-521
        • Souliman S.K.
        • Christie J.
        Pacemaker failure induced by radiotherapy.
        Pacing Clin Electrophysiol. 1994; 17: 270-273
        • Zagzoog A.
        • Wronski M.
        • Shurrab M.
        • et al.
        Incidence of cardiac implantable electronic device malfunction post radiation therapy.
        Circulation. 2017; 136: A14750
        • Solan A.N.
        • Solan M.J.
        • Bednarz G.
        • Goodkin M.B.
        Treatment of patients with cardiac pacemakers and implantable cardioverter-defibrillators during radiotherapy.
        Int J Radiat Oncol Biol Phys. 2004; 59: 897-904
        • Hudson F.
        • Coulshed D.
        • D’Souza E.
        • Baker C.
        Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: a systematic review.
        J Med Imaging Radiat Oncol. 2010; 54: 53-61
        • Hurkmans C.W.
        • Knegjens J.L.
        • Oei B.S.
        • et al.
        Management of radiation oncology patients with a pacemaker or ICD: a new comprehensive practical guideline in The Netherlands. Dutch Society of Radiotherapy and Oncology (NVRO).
        Radiat Oncol. 2012; 7: 198
        • Poole J.E.
        • Gleva M.J.
        • Mela T.
        • et al.
        Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry.
        Circulation. 2010; 122: 1553-1561
        • Sung W.
        • Kim S.
        • Kim J.I.
        • et al.
        Dosimetric perturbations due to an implanted cardiac pacemaker in MammoSite((R)) treatment.
        Med Phys. 2012; 39: 6185-6191
        • Peet S.C.
        • Wilks R.
        • Kairn T.
        • Crowe S.B.
        Measuring dose from radiotherapy treatments in the vicinity of a cardiac pacemaker.
        Phys Med. 2016; 32: 1529-1536
        • Wadasadawala T.
        • Pandey A.
        • Agarwal J.P.
        • et al.
        Radiation therapy with implanted cardiac pacemaker devices: a clinical and dosimetric analysis of patients and proposed precautions.
        Clin Oncol (R Coll Radiol). 2011; 23: 79-85
        • Munshi A.
        • Wadasadawala T.
        • Sharma P.K.
        • et al.
        Radiation therapy planning of a breast cancer patient with in situ pacemaker–challenges and lessons.
        Acta Oncol. 2008; 47: 255-260
        • Ferrara T.
        • Baiotto B.
        • Malinverni G.
        • et al.
        Irradiation of pacemakers and cardio-defibrillators in patients submitted to radiotherapy: a clinical experience.
        Tumori. 2010; 96: 76-83
        • Gomez D.R.
        • Poenisch F.
        • Pinnix C.C.
        • et al.
        Malfunctions of implantable cardiac devices in patients receiving proton beam therapy: incidence and predictors.
        Int J Radiat Oncol Biol Phys. 2013; 87: 570-575
        • Tseng Z.H.
        Risk of cardiovascular implantable electronic device malfunction with radiation therapy: location, dose, or energy?.
        JAMA Intern Med. 2015; 175: 1698-1699
        • Salerno F.
        • Gomellini S.
        • Caruso C.
        • et al.
        Management of radiation therapy patients with cardiac defibrillator or pacemaker.
        Radiol Med. 2016; 121: 515-520
        • Langer M.
        • Orlandi E.
        • Carrara M.
        • Previtali P.
        • Haeusler E.A.
        Management of patients with implantable cardioverter defibrillator needing radiation therapy for cancer.
        Br J Anaesth. 2012; 108 ([author reply 882]): 881-882
        • Sundar S.
        • Symonds R.P.
        • Deehan C.
        Radiotherapy to patients with artificial cardiac pacemakers.
        Cancer Treat Rev. 2005; 31: 474-486
        • Crossley G.H.
        • Poole J.E.
        • Rozner M.A.
        • et al.
        The Heart Rhythm Society (HRS)/American Society of Anesthesiologists (ASA) expert consensus statement on the perioperative management of patients with implantable defibrillators, pacemakers and arrhythmia monitors: facilities and patient management this document was developed as a joint project with the American Society of Anesthesiologists (ASA), and in collaboration with the American Heart Association (AHA), and the Society of Thoracic Surgeons (STS).
        Heart Rhythm. 2011; 8: 1114-1154
        • Thomas Jr., C.R.
        Safe delivery of radiotherapy to patients with pacemakers or cardioverter-defibrillator devices.
        JAMA Oncol. 2015; 1: 632
        • Pinski S.L.
        • Trohman R.G.
        Interference in implanted cardiac devices, part I.
        Pacing Clin Electrophysiol. 2002; 25: 1367-1381
        • Bourgouin A.
        • Varfalvy N.
        • Archambault L.
        Estimating and reducing dose received by cardiac devices for patients undergoing radiotherapy.
        J Appl Clin Med Phys. 2015; 16: 5317
        • Raitt M.H.
        • Stelzer K.J.
        • Laramore G.E.
        • et al.
        Runaway pacemaker during high-energy neutron radiation therapy.
        Chest. 1994; 106: 955-957
        • Katzenberg C.A.
        • Marcus F.I.
        • Heusinkveld R.S.
        • Mammana R.B.
        Pacemaker failure due to radiation therapy.
        Pacing Clin Electrophysiol. 1982; 5: 156-159
        • Brooks C.
        • Mutter M.
        Pacemaker failure associated with therapeutic radiation.
        Am J Emerg Med. 1988; 6: 591-593
        • Mollerus M.
        • Naslund L.
        • Lipinski M.
        • et al.
        Radiation tolerance of contemporary implantable cardioverter-defibrillators.
        J Interv Card Electrophysiol. 2014; 39: 171-175
        • Beinart R.
        • Nazarian S.
        Effects of external electrical and magnetic fields on pacemakers and defibrillators: from engineering principles to clinical practice.
        Circulation. 2013; 128: 2799-2809
        • Oshiro Y.
        • Sugahara S.
        • Noma M.
        • et al.
        Proton beam therapy interference with implanted cardiac pacemakers.
        Int J Radiat Oncol Biol Phys. 2008; 72: 723-727
        • Viganego F.
        • Singh R.
        • Fradley M.G.
        Arrhythmias and other electrophysiology issues in cancer patients receiving chemotherapy or radiation.
        Curr Cardiol Rep. 2016; 18: 52