Canadian Journal of Cardiology

Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy

  • André C. Carpentier
    Corresponding author: Dr André C. Carpentier, Division of Endocrinology, Faculty of Medicine, University of Sherbrooke, 3001 12th Ave North, Sherbrooke, Québec J1H 5N4, Canada. Tel.: +1-819-564-5243; fax: +1-819-564-5292.
    Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
    Search for articles by this author
Published:January 15, 2018DOI:


      Patients with diabetes are at very high risk of hospitalization and death from heart failure. Increased prevalence of coronary heart disease, hypertension, autonomic neuropathy, and kidney failure all play a role in this increased risk. However, cardiac metabolic abnormalities are now recognized to play a role in this increased risk. Increased reliance on fatty acids to produce energy might predispose the diabetic heart to oxidative stress and ischemic damage. Intramyocellular accumulation of toxic lipid metabolites leads to a number of cellular abnormalities that might also contribute to cardiac remodelling and cardiac dysfunction. However, fatty acid availability from circulation and from intracellular lipid droplets to fuel the heart is critical to maintain its function. Fatty acids delivery to the heart is very complex and includes plasma nonesterified fatty acid flux as well as triglyceride-rich lipoprotein-mediated transport. Although many studies have shown a cross-sectional association between enhanced fatty acid delivery to the heart and reduction in left ventricular function in subjects with prediabetes and diabetes, these mechanisms change very rapidly during type 2 diabetes treatment. The present review focuses on the role of fatty acids in cardiac function, with particular emphasis on the possible role of early abnormalities of dietary fatty acid metabolism in the development of diabetic cardiomyopathy.


      Les patients diabétiques sont exposés à un risque plus élevé d’hospitalisation et de décès en raison d’insuffisance cardiaque. L’augmentation de la prévalence de la coronaropathie, de l’hypertension, de la neuropathie autonome et de l’insuffisance rénale participe à cette augmentation du risque. Toutefois, on reconnaît maintenant que les troubles du métabolisme cardiaque jouent un rôle dans cette augmentation du risque. Le recours accru aux acides gras pour produire l’énergie prédisposerait le cœur des diabétiques au stress oxydatif et aux lésions ischémiques. L’accumulation intramyocellulaire de métabolites lipidiques toxiques entraîne plusieurs anomalies cellulaires qui contribueraient également au remodelage cardiaque et á la dysfonction cardiaque. Toutefois, la disponibilité des acides gras provenant de la circulation et des gouttelettes lipidiques intracellulaires pour entretenir le cœur est essentielle pour maintenir son fonctionnement. L’apport accru en acides gras au cœur est très complexe et passe par le débit plasmatique des acides gras non estérifiés et le transport médié par les lipoprotéines riches en triglycérides. Bien que plusieurs études aient démontré une association transversale entre l’apport accru en acides gras au cœur et la réduction de la fonction ventriculaire gauche chez les sujets prédiabétiques et diabétiques, ces mécanismes changent très rapidement au cours du traitement du diabète de type 2. La présente revue porte principalement sur le rôle des acides gras sur la fonction cardiaque, notamment les troubles précoces du métabolisme des acides gras d’origine alimentaire dans le développement de la cardiomyopathie diabétique.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • NCD Risk Factor Collaboration (NCD-RisC)
        Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants.
        Lancet. 2016; 387: 1513-1530
        • Seshasai S.R.
        • Kaptoge S.
        • Thompson A.
        • et al.
        Diabetes mellitus, fasting glucose, and risk of cause-specific death.
        N Engl J Med. 2011; 364: 829-841
        • Mozaffarian D.
        • Benjamin E.J.
        • Go A.S.
        • et al.
        Heart disease and stroke statistics-2015 update: a report from the American Heart Association.
        Circulation. 2015; 131: e29-e322
        • Juutilainen A.
        • Kortelainen S.
        • Lehto S.
        • et al.
        Gender difference in the impact of type 2 diabetes on coronary heart disease risk.
        Diabetes Care. 2004; 27: 2898-2904
        • Dale A.C.
        • Nilsen T.I.
        • Vatten L.
        • Midthjell K.
        • Wiseth R.
        Diabetes mellitus and risk of fatal ischaemic heart disease by gender: 18 years follow-up of 74,914 individuals in the HUNT 1 Study.
        Eur Heart J. 2007; 28: 2924-2929
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • et al.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Lehrke M.
        • Marx N.
        Diabetes mellitus and heart failure.
        Am J Cardiol. 2017; 120: S37-S47
        • Matsue Y.
        • Suzuki M.
        • Nakamura R.
        • et al.
        Prevalence and prognostic implications of pre-diabetic state in patients with heart failure.
        Circ J. 2011; 75: 2833-2839
        • Gustafsson I.
        • Brendorp B.
        • Seibaek M.
        • et al.
        Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure.
        J Am Coll Cardiol. 2004; 43: 771-777
        • Jia G.
        • Whaley-Connell A.
        • Sowers J.R.
        Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease.
        Diabetologia. 2018; 61: 21-28
        • Labbe S.M.
        • Grenier-Larouche T.
        • Noll C.
        • et al.
        Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans.
        Diabetes. 2012; 61: 2701-2710
        • Whalley G.A.
        • Gusso S.
        • Hofman P.
        • et al.
        Structural and functional cardiac abnormalities in adolescent girls with poorly controlled type 2 diabetes.
        Diabetes Care. 2009; 32: 883-888
        • Rubler S.
        • Dlugash J.
        • Yuceoglu Y.Z.
        • et al.
        New type of cardiomyopathy associated with diabetic glomerulosclerosis.
        Am J Cardiol. 1972; 30: 595-602
        • Bugger H.
        • Abel E.D.
        Molecular mechanisms of diabetic cardiomyopathy.
        Diabetologia. 2014; 57: 660-671
        • Lewis G.F.
        • Carpentier A.
        • Adeli K.
        • Giacca A.
        Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes.
        Endocr Rev. 2002; 23: 201-229
        • Normand-Lauziere F.
        • Frisch F.
        • Labbe S.M.
        • et al.
        Increased postprandial nonesterified fatty acid appearance and oxidation in type 2 diabetes is not fully established in offspring of diabetic subjects.
        PLoS One. 2010; 5e10956
        • Carpentier A.C.
        • Labbe S.M.
        • Grenier-Larouche T.
        • Noll C.
        Abnormal dietary fatty acid metabolic partitioning in insulin resistance and type 2 diabetes.
        Clin Lipidol. 2011; 6: 703-716
        • Unger R.H.
        Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications.
        Diabetes. 1995; 44: 863-870
        • Carpentier A.C.
        Postprandial fatty acid metabolism in the development of lipotoxicity and type 2 diabetes.
        Diabetes Metab. 2008; 34: 97-107
        • Despres J.P.
        • Lemieux I.
        Abdominal obesity and metabolic syndrome.
        Nature. 2006; 444: 881-887
        • van Loon L.J.
        • Koopman R.
        • Manders R.
        • et al.
        Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes.
        Am J Physiol Endocrinol Metab. 2004; 287: E558-E565
        • Liu L.
        • Shi X.
        • Bharadwaj K.G.
        • et al.
        DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity.
        J Biol Chem. 2009; 284: 36312-36323
        • Chavez J.A.
        • Summers S.A.
        Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms.
        Biochim Biophys Acta. 2010; 1801: 252-265
        • Muoio D.M.
        Intramuscular triacylglycerol and insulin resistance: guilty as charged or wrongly accused?.
        Biochim Biophys Acta. 2010; 1801: 281-288
        • Sieber J.
        • Jehle A.W.
        Free fatty acids and their metabolism affect function and survival of podocytes.
        Front Endocrinol. 2014; 5: 186
        • Herman-Edelstein M.
        • Scherzer P.
        • Tobar A.
        • Levi M.
        • Gafter U.
        Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy.
        J Lipid Res. 2014; 55: 561-572
        • Bachmann O.P.
        • Dahl D.B.
        • Brechtel K.
        • et al.
        Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans.
        Diabetes. 2001; 50: 2579-2584
        • Xiao C.
        • Giacca A.
        • Carpentier A.
        • Lewis G.F.
        Differential effects of monounsaturated, polyunsaturated and saturated fat ingestion on glucose-stimulated insulin secretion, sensitivity and clearance in overweight and obese, non-diabetic humans.
        Diabetologia. 2006; 49: 1371-1379
        • Giacca A.
        • Xiao C.
        • Oprescu A.I.
        • Carpentier A.C.
        • Lewis G.F.
        Lipid-induced pancreatic beta-cell dysfunction: focus on in vivo studies.
        Am J Physiol Endocrinol Metab. 2011; 300: E255-E262
        • Steinberg H.O.
        • Tarshoby M.
        • Monestel R.
        • et al.
        Elevated circulating free fatty acid levels impair endothelium- dependent vasodilation.
        J Clin Invest. 1997; 100: 1230-1239
        • Clerk L.H.
        • Rattigan S.
        • Clark M.G.
        Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo.
        Diabetes. 2002; 51: 1138-1145
        • Krebs M.
        • Geiger M.
        • Polak K.
        • et al.
        Increased plasma levels of plasminogen activator inhibitor-1 and soluble vascular cell adhesion molecule after triacylglycerol infusion in man.
        Thromb Haemost. 2003; 90: 422-428
        • Larbi A.
        • Grenier A.
        • Frisch F.
        • et al.
        Acute in vivo elevation of intravascular triacylglycerol lipolysis impairs peripheral T cell activation in humans.
        Am J Clin Nutr. 2005; 82: 949-956
        • Lai M.
        • Chandrasekera P.C.
        • Barnard N.D.
        You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes.
        Nutr Diabetes. 2014; 4e135
        • Schwingshackl L.
        • Hoffmann G.
        Comparison of the long-term effects of high-fat v. low-fat diet consumption on cardiometabolic risk factors in subjects with abnormal glucose metabolism: a systematic review and meta-analysis.
        Br J Nutr. 2014; 111: 2047-2058
        • Alhazmi A.
        • Stojanovski E.
        • McEvoy M.
        • Garg M.L.
        Macronutrient intakes and development of type 2 diabetes: a systematic review and meta-analysis of cohort studies.
        J Am Coll Nutr. 2012; 31: 243-258
        • Grenier-Larouche T.
        • Labbé S.M.
        • Noll C.
        • Richard D.
        • Carpentier A.C.
        Metabolic inflexibility of white and brown adipose tissues in abnormal fatty acid partitioning of type 2 diabetes.
        Int J Obes Suppl. 2012; 2: S37-S42
        • Lopaschuk G.D.
        Metabolic modulators in heart disease: past, present, and future.
        Can J Cardiol. 2017; 33: 838-849
        • De Jong K.A.
        • Lopaschuk G.D.
        Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction.
        Can J Cardiol. 2017; 33: 860-871
        • Ci X.
        • Frisch F.
        • Lavoie F.
        • et al.
        The effect of insulin on the intracellular distribution of 14(R, S)-[(18)F]fluoro-6-thia-heptadecanoic acid in rats.
        Mol Imaging Biol. 2006; 8: 237-244
        • Coggan A.R.
        • Kisrieva-Ware Z.
        • Dence C.S.
        • et al.
        Measurement of myocardial fatty acid esterification using [1-11C]palmitate and PET: comparison with direct measurements of myocardial triglyceride synthesis.
        J Nucl Cardiol. 2009; 16: 562-570
        • Drosatos K.
        • Bharadwaj K.G.
        • Lymperopoulos A.
        • et al.
        Cardiomyocyte lipids impair beta-adrenergic receptor function via PKC activation.
        Am J Physiol Endocrinol Metab. 2011; 300: E489-E499
        • Chokshi A.
        • Drosatos K.
        • Cheema F.H.
        • et al.
        Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure.
        Circulation. 2012; 125: 2844-2853
        • Soltys C.L.
        • Buchholz L.
        • Gandhi M.
        • et al.
        Phosphorylation of cardiac protein kinase B is regulated by palmitate.
        Am J Physiol Heart Circ Physiol. 2002; 283: H1056-H1064
        • Wall S.R.
        • Lopaschuk G.D.
        Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats.
        Biochim Biophys Acta. 1989; 1006: 97-103
        • Liu Q.
        • Docherty J.C.
        • Rendell J.C.
        • Clanachan A.S.
        • Lopaschuk G.D.
        High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation.
        J Am Coll Cardiol. 2002; 39: 718-725
        • Bessi V.L.
        • Labbe S.M.
        • Huynh D.N.
        • et al.
        EP 80317, a selective CD36 ligand, shows cardioprotective effects against post-ischaemic myocardial damage in mice.
        Cardiovasc Res. 2012; 96: 99-108
        • Guarini G.
        • Huqi A.
        • Morrone D.
        • Marzilli M.
        Pharmacological agents targeting myocardial metabolism for the management of chronic stable angina: an update.
        Cardiovasc Drugs Ther. 2016; 30: 379-391
        • Suganami T.
        • Tanimoto-Koyama K.
        • Nishida J.
        • et al.
        Role of the toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages.
        Arterioscler Thromb Vasc Biol. 2007; 27: 84-91
        • Inoguchi T.
        • Li P.
        • Umeda F.
        • et al.
        High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells.
        Diabetes. 2000; 49: 1939-1945
        • Borradaile N.M.
        • Han X.
        • Harp J.D.
        • et al.
        Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death.
        J Lipid Res. 2006; 47: 2726-2737
        • Bosma M.
        • Dapito D.H.
        • Drosatos-Tampakaki Z.
        • et al.
        Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity.
        Biochim Biophys Acta. 2014; 1841: 1648-1655
        • Stepniakowski K.T.
        • Goodfriend T.L.
        • Egan B.M.
        Fatty acids enhance vascular alpha-adrenergic sensitivity.
        Hypertension. 1995; 25: 774-778
        • Egan B.M.
        • Greene E.L.
        • Goodfriend T.L.
        Nonesterified fatty acids in blood pressure control and cardiovascular complications.
        Curr Hypertens Rep. 2001; 3: 107-116
        • Haim T.E.
        • Wang W.
        • Flagg T.P.
        • et al.
        Palmitate attenuates myocardial contractility through augmentation of repolarizing Kv currents.
        J Mol Cell Cardiol. 2010; 48: 395-405
        • Biet M.
        • Morin N.
        • Benrezzak O.
        • et al.
        Lasting alterations of the sodium current by short-term hyperlipidemia as a mechanism for initiation of cardiac remodeling.
        Am J Physiol Heart Circ Physiol. 2014; 306: H291-H297
        • Du X.
        • Edelstein D.
        • Obici S.
        • et al.
        Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation.
        J Clin Invest. 2006; 116: 1071-1080
        • Listenberger L.L.
        • Ory D.S.
        • Schaffer J.E.
        Palmitate-induced apoptosis can occur through a ceramide-independent pathway.
        J Biol Chem. 2001; 276: 14890-14895
        • Chinen I.
        • Shimabukuro M.
        • Yamakawa K.
        • et al.
        Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats.
        Endocrinology. 2007; 148: 160-165
        • Wang F.
        • Jia J.
        • Rodrigues B.
        Autophagy, metabolic disease, and pathogenesis of heart dysfunction.
        Can J Cardiol. 2017; 33: 850-859
        • Konstantinidis K.
        • Whelan R.S.
        • Kitsis R.N.
        Mechanisms of cell death in heart disease.
        Arterioscler Thromb Vasc Biol. 2012; 32: 1552-1562
        • Hickson-Bick D.L.
        • Buja L.M.
        • McMillin J.B.
        Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes.
        J Mol Cell Cardiol. 2000; 32: 511-519
        • Sparagna G.C.
        • Hickson-Bick D.L.
        • Buja L.M.
        • McMillin J.B.
        A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis.
        Am J Physiol Heart Circ Physiol. 2000; 279: H2124-H2132
        • Sharma S.
        • Adrogue J.V.
        • Golfman L.
        • et al.
        Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart.
        FASEB J. 2004; 18: 1692-1700
        • Schulze P.C.
        • Drosatos K.
        • Goldberg I.J.
        Lipid use and misuse by the heart.
        Circ Res. 2016; 118: 1736-1751
        • D’Souza K.
        • Nzirorera C.
        • Kienesberger P.C.
        Lipid metabolism and signaling in cardiac lipotoxicity.
        Biochim Biophys Acta. 2016; 1861: 1513-1524
        • Heinonen I.
        • Kudomi N.
        • Kemppainen J.
        • et al.
        Myocardial blood flow and its transit time, oxygen utilization, and efficiency of highly endurance-trained human heart.
        Basic Res Cardiol. 2014; 109: 413
        • Mudaliar S.
        • Alloju S.
        • Henry R.R.
        Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis.
        Diabetes Care. 2016; 39: 1115-1122
        • Knuuti M.J.
        • Yki-Jarvinen H.
        • Voipio-Pulkki L.M.
        • et al.
        Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative.
        J Nucl Med. 1994; 35: 989-998
        • Knuuti M.J.
        • Maki M.
        • Yki-Jarvinen H.
        • et al.
        The effect of insulin and FFA on myocardial glucose uptake.
        J Mol Cell Cardiol. 1995; 27: 1359-1367
        • Mather K.J.
        • Hutchins G.D.
        • Perry K.
        • et al.
        Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer.
        Am J Physiol Endocrinol Metab. 2016; 310: E452-E460
        • Menard S.L.
        • Croteau E.
        • Sarrhini O.
        • et al.
        Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats.
        Am J Physiol Endocrinol Metab. 2010; 298: E1049-E1057
        • Szczepaniak L.S.
        • Victor R.G.
        • Orci L.
        • Unger R.H.
        Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America.
        Circ Res. 2007; 101: 759-767
        • Graner M.
        • Siren R.
        • Nyman K.
        • et al.
        Cardiac steatosis associates with visceral obesity in nondiabetic obese men.
        J Clin Endocrinol Metab. 2013; 98: 1189-1197
        • Liu L.
        • Yu S.
        • Khan R.S.
        • et al.
        DGAT1 deficiency decreases PPAR expression and does not lead to lipotoxicity in cardiac and skeletal muscle.
        J Lipid Res. 2011; 52: 732-744
        • Liu L.
        • Yu S.
        • Khan R.S.
        • et al.
        Diacylglycerol acyl transferase 1 overexpression detoxifies cardiac lipids in PPARγ transgenic mice.
        J Lipid Res. 2012; 53: 1482-1492
        • Graner M.
        • Nyman K.
        • Siren R.
        • et al.
        Ectopic fat depots and left ventricular function in nondiabetic men with nonalcoholic fatty liver disease.
        Circ Cardiovasc Imaging. 2014; 8e001979
        • Graner M.
        • Pentikainen M.O.
        • Nyman K.
        • et al.
        Cardiac steatosis in patients with dilated cardiomyopathy.
        Heart. 2014; 100: 1107-1112
        • Nyman K.
        • Graner M.
        • Pentikainen M.O.
        • et al.
        Cardiac steatosis and left ventricular function in men with metabolic syndrome.
        J Cardiovasc Mag Reson. 2013; 15: 103
        • Lahey R.
        • Wang X.
        • Carley A.N.
        • Lewandowski E.D.
        Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride.
        Circulation. 2014; 130: 1790-1799
        • Tuunanen H.
        • Engblom E.
        • Naum A.
        • et al.
        Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure.
        Circulation. 2006; 114: 2130-2137
        • Stanley W.C.
        • Dabkowski E.R.
        • Ribeiro Jr., R.F.
        • O’Connell K.A.
        Dietary fat and heart failure: moving from lipotoxicity to lipoprotection.
        Circ Res. 2012; 110: 764-776
        • Lehto H.R.
        • Parkka J.
        • Borra R.
        • et al.
        Effects of acute and one-week fatty acid lowering on cardiac function and insulin sensitivity in relation with myocardial and muscle fat and adiponectin levels.
        J Clin Endocrinol Metab. 2012; 97: 3277-3284
        • Wolf P.
        • Winhofer Y.
        • Krssak M.
        • et al.
        Suppression of plasma free fatty acids reduces myocardial lipid content and systolic function in type 2 diabetes.
        Nutr Metab Cardiovasc Dis. 2016; 26: 387-392
        • Rijzewijk L.J.
        • van der Meer R.W.
        • Lamb H.J.
        • et al.
        Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging.
        J Am Coll Cardiol. 2009; 54: 1524-1532
        • Tuunanen H.
        • Engblom E.
        • Naum A.
        • et al.
        Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction.
        J Card Fail. 2006; 12: 644-652
        • Tuunanen H.
        • Ukkonen H.
        • Knuuti J.
        Myocardial fatty acid metabolism and cardiac performance in heart failure.
        Curr Cardiol Rep. 2008; 10: 142-148
        • Tuunanen H.
        • Engblom E.
        • Naum A.
        • et al.
        Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy.
        Circulation. 2008; 118: 1250-1258
        • Lee L.
        • Campbell R.
        • Scheuermann-Freestone M.
        • et al.
        Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment.
        Circulation. 2005; 112: 3280-3288
        • Bucci M.
        • Borra R.
        • Nagren K.
        • et al.
        Trimetazidine reduces endogenous free fatty acid oxidation and improves myocardial efficiency in obese humans.
        Cardiovasc Ther. 2012; 30: 333-341
        • Lowell B.B.
        • Shulman G.I.
        Mitochondrial dysfunction and type 2 diabetes.
        Science. 2005; 307: 384-387
        • Petersen K.F.
        • Dufour S.
        • Befroy D.
        • Garcia R.
        • Shulman G.I.
        Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.
        N Engl J Med. 2004; 350: 664-671
        • Donnelly K.L.
        • Smith C.I.
        • Schwarzenberg S.J.
        • et al.
        Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.
        J Clin Invest. 2005; 115: 1343-1351
        • Jensen M.D.
        • Sarr M.G.
        • Dumesic D.A.
        • Southorn P.A.
        • Levine J.A.
        Regional uptake of meal fatty acids in humans.
        Am J Physiol Endocrinol Metab. 2003; 285: E1282-E1288
        • Mitrou P.
        • Boutati E.
        • Lambadiari V.
        • et al.
        Rates of lipid fluxes in adipose tissue in vivo after a mixed meal in morbid obesity.
        Int J Obes (Lond). 2010; 34: 770-774
        • McQuaid S.E.
        • Hodson L.
        • Neville M.J.
        • et al.
        Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition?.
        Diabetes. 2011; 60: 47-55
        • Brassard P.
        • Frisch F.
        • Lavoie F.
        • et al.
        Impaired plasma nonesterified fatty acid tolerance is an early defect in the natural history of type 2 diabetes.
        J Clin Endocrinol Metab. 2008; 93: 837-844
        • Rhee E.P.
        • Cheng S.
        • Larson M.G.
        • et al.
        Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans.
        J Clin Invest. 2011; 121: 1402-1411
        • Mahendran Y.
        • Cederberg H.
        • Vangipurapu J.
        • et al.
        Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men.
        Diabetes Care. 2013; 36: 3732-3738
        • Borel A.L.
        • Boulet G.
        • Nazare J.A.
        • et al.
        Improved plasma FFA/insulin homeostasis is independently associated with improved glucose tolerance after a 1-year lifestyle intervention in viscerally obese men.
        Diabetes Care. 2013; 36: 3254-3261
        • Grenier-Larouche T.
        • Carreau A.M.
        • Geloen A.
        • et al.
        Fatty acid metabolic remodelling during type 2 diabetes remission after bariatric surgery.
        Diabetes. 2017; 66: 2743-2755
        • Kunach M.
        • Noll C.
        • Phoenix S.
        • et al.
        Effect of sex and impaired glucose tolerance on organ-specific dietary fatty acid metabolism in humans.
        Diabetes. 2015; 64: 2432-2441
        • Labbe S.M.
        • Croteau E.
        • Grenier-Larouche T.
        • et al.
        Normal postprandial nonesterified fatty acid uptake in muscles despite increased circulating fatty acids in type 2 diabetes.
        Diabetes. 2011; 60: 408-415
        • Hames K.C.
        • Vella A.
        • Kemp B.J.
        • Jensen M.D.
        Free fatty acid uptake in humans with CD36 deficiency.
        Diabetes. 2014; 63: 3606-3614
        • Mundi M.S.
        • Koutsari C.
        • Jensen M.D.
        Effects of increased free fatty acid availability on adipose tissue fatty acid storage in men.
        J Clin Endocrinol Metab. 2014; 99: E2635-E2642
        • Hames K.C.
        • Koutsari C.
        • Santosa S.
        • Bush N.C.
        • Jensen M.D.
        Adipose tissue fatty acid storage factors: effects of depot, sex and fat cell size.
        Int J Obes (Lond). 2015; 39: 884-887
        • Herrero P.
        • Peterson L.R.
        • McGill J.B.
        • et al.
        Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus.
        J Am Coll Cardiol. 2006; 47: 598-604
        • Viljanen A.P.
        • Karmi A.
        • Borra R.
        • et al.
        Effect of caloric restriction on myocardial fatty acid uptake, left ventricular mass, and cardiac work in obese adults.
        Am J Cardiol. 2009; 103: 1721-1726
        • Knuuti J.
        • Takala T.O.
        • Nagren K.
        • et al.
        Myocardial fatty acid oxidation in patients with impaired glucose tolerance.
        Diabetologia. 2001; 44: 184-187
        • Turpeinen A.K.
        • Takala T.O.
        • Nuutila P.
        • et al.
        Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R, S)-[18F]fluoro-6-thia-heptadecanoic acid.
        Diabetes. 1999; 48: 1245-1250
        • Pulinilkunnil T.
        • Rodrigues B.
        Cardiac lipoprotein lipase: metabolic basis for diabetic heart disease.
        Cardiovasc Res. 2006; 69: 329-340
        • Kim M.S.
        • Wang Y.
        • Rodrigues B.
        Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy.
        Biochim Biophys Acta. 2012; 1821: 800-808
        • Wang Y.
        • Puthanveetil P.
        • Wang F.
        • et al.
        Severity of diabetes governs vascular lipoprotein lipase by affecting enzyme dimerization and disassembly.
        Diabetes. 2011; 60: 2041-2050
        • Ghosh S.
        • An D.
        • Pulinilkunnil T.
        • et al.
        Role of dietary fatty acids and acute hyperglycemia in modulating cardiac cell death.
        Nutrition. 2004; 20: 916-923
        • Ghosh S.
        • Rodrigues B.
        Cardiac cell death in early diabetes and its modulation by dietary fatty acids.
        Biochim Biophys Acta. 2006; 1761: 1148-1162
        • Goldberg I.J.
        • Trent C.M.
        • Schulze P.C.
        Lipid metabolism and toxicity in the heart.
        Cell Metab. 2012; 15: 805-812
        • Yagyu H.
        • Chen G.
        • Yokoyama M.
        • et al.
        Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy.
        J Clin Invest. 2003; 111: 419-426
        • Coppack S.W.
        • Yost T.J.
        • Fisher R.M.
        • Eckel R.H.
        • Miles J.M.
        Periprandial systemic and regional lipase activity in normal humans.
        Am J Physiol. 1996; 270: E718-E722
        • Eckel R.H.
        • Jensen D.R.
        • Schlaepfer I.R.
        • Yost T.J.
        Tissue-specific regulation of lipoprotein lipase by isoproterenol in normal-weight humans.
        Am J Physiol. 1996; 271: R1280-R1286
        • Farese Jr., R.V.
        • Yost T.J.
        • Eckel R.H.
        Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans.
        Metabolism. 1991; 40: 214-216
        • Goldberg I.J.
        • Eckel R.H.
        • Abumrad N.A.
        Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways.
        J Lipid Res. 2009; 50: S86-S90
        • Labbe S.M.
        • Grenier-Larouche T.
        • Croteau E.
        • et al.
        Organ-specific dietary fatty acid uptake in humans using positron emission tomography coupled to computed tomography.
        Am J Physiol Endocrinol Metab. 2011; 300: E445-E453
      1. Schrauwen-Hinderling VB, Carpentier AC. Molecular imaging of postprandial metabolism. J Appl Physiol (1985); 2018;124:504-11.

        • Noll C.
        • Carpentier A.C.
        Dietary fatty acid metabolism in prediabetes.
        Curr Opin Lipidol. 2017; 28: 1-10
        • Labbe S.M.
        • Noll C.
        • Grenier-Larouche T.
        • et al.
        Improved cardiac function and dietary fatty acid metabolism after modest weight loss in subjects with impaired glucose tolerance.
        Am J Physiol Endocrinol Metab. 2014; 306: E1388-E1396
        • Noll C.
        • Kunach M.
        • Frisch F.
        • et al.
        Seven-day caloric and saturated fat restriction increases myocardial dietary fatty acid partitioning in impaired glucose-tolerant subjects.
        Diabetes. 2015; 64: 3690-3699
        • Blondin D.P.
        • Tingelstad H.C.
        • Noll C.
        • et al.
        Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men.
        Nat Commun. 2017; 8: 14146
        • Morrow D.A.
        • Scirica B.M.
        • Sabatine M.S.
        • et al.
        B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST Elevation Acute Coronary-Thrombolysis In Myocardial Infarction 36) trial.
        J Am Coll Cardiol. 2010; 55: 1189-1196
        • Chisholm J.W.
        • Goldfine A.B.
        • Dhalla A.K.
        • et al.
        Effect of ranolazine on A1C and glucose levels in hyperglycemic patients with non-ST elevation acute coronary syndrome.
        Diabetes Care. 2010; 33: 1163-1168
        • Ferrannini E.
        • Mark M.
        • Mayoux E.
        CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis.
        Diabetes Care. 2016; 39: 1108-1114
        • Grenier-Larouche T.
        • Carreau A.M.
        • Carpentier A.C.
        Early metabolic improvement after bariatric surgery: the first steps toward remission of type 2 diabetes.
        Can J Diabetes. 2017; 41: 418-425
        • Shin S.H.
        • Lee Y.J.
        • Heo Y.S.
        • et al.
        Beneficial effects of bariatric surgery on cardiac structure and function in obesity.
        Obes Surg. 2017; 27: 620-625
      2. Kurnicka K, Domienik-Karlowicz J, Lichodziejewska B, et al. Improvement of left ventricular diastolic function and left heart morphology in young women with morbid obesity six months after bariatric surgery. Cardiol J 2018;25:97-105.

        • Vest A.R.
        • Patel P.
        • Schauer P.R.
        • et al.
        Clinical and echocardiographic outcomes after bariatric surgery in obese patients with left ventricular systolic dysfunction.
        Circ Heart Fail. 2016; 9e002260
        • Bosch J.
        • Gerstein H.C.
        • et al.
        • ORIGIN Trial Investigators
        n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia.
        N Engl J Med. 2012; 367: 309-318
        • ORIGIN Trial Investigators
        Cardiovascular and Other Outcomes Postintervention With Insulin Glargine and Omega-3 Fatty Acids (ORIGINALE).
        Diabetes Care. 2016; 39: 709-716