Advertisement
Canadian Journal of Cardiology

Breaking Barriers: Mobile Health Interventions for Cardiovascular Disease

  • Harry Klimis
    Correspondence
    Corresponding author: Dr Harry Klimis, Westmead Hospital Cardiology Department, PO Box 533, Wentworthville, New South Wales 2145, Australia. Tel.+61-2-8890-3125.
    Affiliations
    University of Sydney, Sydney, New South Wales, Australia

    Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia

    The George Institute for Global Health, Sydney, New South Wales, Australia
    Search for articles by this author
  • Jay Thakkar
    Affiliations
    University of Sydney, Sydney, New South Wales, Australia

    Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia

    The George Institute for Global Health, Sydney, New South Wales, Australia
    Search for articles by this author
  • Clara K. Chow
    Affiliations
    University of Sydney, Sydney, New South Wales, Australia

    Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia

    The George Institute for Global Health, Sydney, New South Wales, Australia
    Search for articles by this author

      Abstract

      Cardiovascular disease (CVD) is a leading global cause of death and morbidity and prevention needs to be strengthened to tackle this. Mobile health (mHealth) might present a novel and effective solution in CVD prevention, and interest in mHealth has grown dramatically since the advent of the smartphone. In this review, we discuss mHealth interventions that target multiple cardiovascular risk factors simultaneously in the context of primary as well as secondary prevention. There is some evidence that mHealth interventions improve a range of individual CVD risk factors, but a relative paucity of evidence on mHealth interventions improving multiple CVD risk factors simultaneously. The existing data suggest mHealth programs improve overall CVD risk, at least in the short term. Interpretation of the evidence is difficult in the context of poor methodology and mHealth modalities often being a part of large complex interventions. In this review we identify a number of unanswered questions including: which mode of mHealth (or combination of interventions) would be most effective, what is the durability of intervention effects, and what degree of personalization and interactivity is required.

      Résumé

      La maladie cardiovasculaire (MCV) est une des principales causes de mortalité et de morbidité dans le monde et il est urgent de mettre l’accent sur sa prévention pour s’attaquer à ce problème. Les applications mobiles en santé pourraient constituer une solution innovante et efficace pour la prévention de la MCV, et l’intérêt pour ce type de technologie a connu un essor fulgurant depuis les premiers téléphones intelligents. Dans cette revue, nous examinons les applications mobiles en santé qui ciblent simultanément plusieurs facteurs de risque cardiovasculaire dans le contexte de la prévention tant primaire que secondaire. Les données probantes dont on dispose indiquant que les interventions utilisant des applications mobiles en santé ont pour effet d’améliorer plusieurs facteurs de risque de MCV individuels sont relativement plus nombreuses que celles attestant une amélioration simultanée des facteurs de risque de MCV multiples. Les données existantes laissent croire que les programmes d’applications mobiles en santé diminuent le risque de MCV global, du moins à court terme. L’interprétation des données probantes est difficile dans le contexte d’une méthodologie inadéquate et du fait que les modalités utilisant des applications mobiles en santé sont souvent intégrées à des interventions complexes à grande échelle. Dans cette revue, nous recensons plusieurs questions encore sans réponse, y compris les suivantes : quel serait le mode d’utilisation le plus efficace des applications mobiles en santé (ou d’une combinaison d’interventions), quelle est la durabilité des effets de l’intervention, et quel est le degré de personnalisation et d’interactivité requis.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organisation
        Media Centre. Cardiovascular Diseases (CVDs).
        (Available at:)
      1. Australian Institute of Health and Welfare. Monitoring acute coronary syndrome using national hospital data: an information paper on trends and issues. Cat. no. CVD 57 2011. Canberra: AIHW, 2011.

        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • et al.
        Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet. 2004; 364: 937-952
        • Smith Jr., S.C.
        • Benjamin E.J.
        • Bonow R.O.
        • et al.
        AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association.
        J Am Coll Cardiol. 2011; 58: 2432-2446
        • Bethell H.J.
        • Evans J.A.
        • Turner S.C.
        • Lewin R.J.
        The rise and fall of cardiac rehabilitation in the United Kingdom since 1998.
        J Public Health (Oxf). 2007; 29: 57-61
        • Chew D.P.
        • Anderson F.A.
        • Avezum A.
        • et al.
        Six-month survival benefits associated with clinical guideline recommendations in acute coronary syndromes.
        Heart. 2010; 96: 1201-1206
        • Kotseva K.
        • Wood D.
        • De Bacquer D.
        • et al.
        EUROASPIRE IV: a European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries.
        Eur J Prev Cardiol. 2016; 23: 636-648
        • Thakkar J.B.
        • Chow C.K.
        Adherence to secondary prevention therapies in acute coronary syndrome.
        Med J Aust. 2014; 201: S106-S109
        • World Health Organisation
        mHealth: new horizons for health through mobile technologies: second global survey on eHealth. Vol 2016. World Health Organization, Geneva, Switzerland2011
        • Fierce Wireless
        Report: global smartphone penetration to jump 25% in 2014.
        (Available at:)
        • Bastawrous A.
        • Armstrong M.J.
        Mobile health use in low- and high-income countries: an overview of the peer-reviewed literature.
        J R Soc Med. 2013; 106: 130-142
        • Burke L.E.
        • Ma J.
        • Azar K.M.
        • et al.
        Current science on consumer use of mobile health for cardiovascular disease prevention: a scientific statement from the American Heart Association.
        Circulation. 2015; 132: 1157-1213
        • Smith Jr., S.C.
        Current and future directions of cardiovascular risk prediction.
        Am J Cardiol. 2006; 97: 28A-32A
        • World Health Organisation
        Global Action Plan for the Prevention and Control of NCDs 2013-2020.
        (Available at:)
        • Ndindjock R.
        • Gedeon J.
        • Mendis S.
        • Paccaud F.
        • Bovet P.
        Potential impact of single-risk-factor versus total risk management for the prevention of cardiovascular events in Seychelles.
        Bull World Health Organ. 2011; 89: 286-295
        • International Telecommunications Union
        Measuring the Information Society Report 2015.
        (Available at:)
        • Neubeck L.
        • Lowres N.
        • Benjamin E.J.
        • et al.
        The mobile revolution–using smartphone apps to prevent cardiovascular disease.
        Nat Rev Cardiol. 2015; 12: 350-360
        • Meng Y.
        • Wong S.S.
        Trends and features of top 100 grossing health and fitness iPhone apps [abstract 1028.5].
        FASEB J. 2014; 28: 1028.5
        • Pew Research Center
        Older adults and technology use.
        (Available at:)
        • Whittaker R.
        • McRobbie H.
        • Bullen C.
        • Rodgers A.
        • Gu Y.
        Mobile phone-based interventions for smoking cessation.
        Cochrane Database Syst Rev. 2016; 4CD006611
        • Siopis G.
        • Chey T.
        • Allman-Farinelli M.
        A systematic review and meta-analysis of interventions for weight management using text messaging.
        J Hum Nutr Diet. 2015; 28: 1-15
        • Maddison R.
        • Pfaeffli L.
        • Whittaker R.
        • et al.
        A mobile phone intervention increases physical activity in people with cardiovascular disease: results from the HEART randomized controlled trial.
        Eur J Prev Cardiol. 2015; 22: 701-709
        • Liang X.
        • Wang Q.
        • Yang X.
        • et al.
        Effect of mobile phone intervention for diabetes on glycaemic control: a meta-analysis.
        Diabet Med. 2011; 28: 455-463
        • Logan A.G.
        • Irvine M.J.
        • McIsaac W.J.
        • et al.
        Effect of home blood pressure telemonitoring with self-care support on uncontrolled systolic hypertension in diabetics.
        Hypertension. 2012; 60: 51-57
        • Bobrow K.
        • Farmer A.J.
        • Springer D.
        • et al.
        Mobile phone text messages to support treatment adherence in adults with high blood pressure (SMS-Text Adherence Support [StAR]): a single-blind, randomized trial.
        Circulation. 2016; 133: 592-600
        • Liu Z.
        • Chen S.
        • Zhang G.
        • Lin A.
        Mobile phone-based lifestyle intervention for reducing overall cardiovascular disease risk in Guangzhou, China: a pilot study.
        Int J Environ Res Public Health. 2015; 12: 15993-16004
        • Anand S.S.
        • Samaan Z.
        • Middleton C.
        • et al.
        A digital health intervention to lower cardiovascular risk: a randomized clinical trial.
        JAMA Cardiol. 2016; 1: 601-606
        • Zhang H.
        • Jiang Y.
        • Nguyen H.D.
        • Poo D.C.
        • Wang W.
        The effect of a smartphone-based coronary heart disease prevention (SBCHDP) programme on awareness and knowledge of CHD, stress, and cardiac-related lifestyle behaviours among the working population in Singapore: a pilot randomised controlled trial.
        Health Qual Life Outcomes. 2017; 15: 49
        • Widmer R.J.
        • Allison T.G.
        • Keane B.
        • et al.
        Workplace digital health is associated with improved cardiovascular risk factors in a frequency-dependent fashion: a large prospective observational cohort study.
        PLoS One. 2016; 11e0152657
        • Chow C.K.
        • Redfern J.
        • Hillis G.S.
        • et al.
        Effect of lifestyle-focused text messaging on risk factor modification in patients with coronary heart disease: a randomized clinical trial.
        JAMA. 2015; 314: 1255-1263
        • Pfaeffli Dale L.
        • Whittaker R.
        • Jiang Y.
        • et al.
        Text message and internet support for coronary heart disease self-management: results from the Text4Heart randomized controlled trial.
        J Med Internet Res. 2015; 17e237
        • Blasco A.
        • Carmona M.
        • Fernandez-Lozano I.
        • et al.
        Evaluation of a telemedicine service for the secondary prevention of coronary artery disease.
        J Cardiopulm Rehabil Prev. 2012; 32: 25-31
        • Johnston N.
        • Bodegard J.
        • Jerstrom S.
        • et al.
        Effects of interactive patient smartphone support app on drug adherence and lifestyle changes in myocardial infarction patients: a randomized study.
        Am Heart J. 2016; 178: 85-94
        • Varnfield M.
        • Karunanithi M.
        • Lee C.K.
        • et al.
        Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial.
        Heart. 2014; 100: 1770-1779
        • Widmer R.J.
        • Allison T.G.
        • Lennon R.
        • et al.
        Digital health intervention during cardiac rehabilitation: a randomized controlled trial.
        Am Heart J. 2017; 188: 65-72
        • Ho P.M.
        • Magid D.J.
        • Shetterly S.M.
        • et al.
        Medication nonadherence is associated with a broad range of adverse outcomes in patients with coronary artery disease.
        Am Heart J. 2008; 155: 772-779
        • World Health Organisation
        Adherence to Long-term Therapies: Evidence for Action.
        (Available at:)
        • Hamine S.
        • Gerth-Guyette E.
        • Faulx D.
        • Green B.B.
        • Ginsburg A.S.
        Impact of mHealth chronic disease management on treatment adherence and patient outcomes: a systematic review.
        J Med Internet Res. 2015; 17: e52
        • Thakkar J.
        • Kurup R.
        • Laba T.L.
        • et al.
        Mobile telephone text messaging for medication adherence in chronic disease: a meta-analysis.
        JAMA Intern Med. 2016; 176: 340-349
        • Gandhi S.
        • Chen S.
        • Hong L.
        • et al.
        Effect of mobile health interventions on the secondary prevention of cardiovascular disease: systematic review and meta-analysis.
        Can J Cardiol. 2017; 33: 219-231

      Linked Article