Advertisement
Canadian Journal of Cardiology

Implications of Transcatheter Heart Valve Selection on Early and Late Pacemaker Rate and on Length of Stay

      Abstract

      Background

      Transcatheter aortic valve replacement (TAVR) can cause injury to the atrioventricular conduction system. We evaluated the effect of transcatheter heart valve (THV) type on the rate of new pacemaker implantation and length of hospital stay.

      Methods

      Patients across all hospitals performing transfemoral TAVR in the province of British Columbia between 2012 and 2016 participated in a mandated registry with linkages to provincial health databases. We evaluated 1141 patients undergoing successful transfemoral TAVR for native aortic valve stenosis with 5 commonly used valves.

      Results

      Valves implanted were balloon-expandable (BEV) (n = 728), self-expandable (SEV) (n = 341), and mechanically-expandable (MEV) (n = 72). Baseline clinical characteristics were similar between groups: mean age 82.5 years with multiple comorbidities. The mean Society of Thoracic Surgeons predicted risk of mortality was 6.0%. Indwelling temporary pacemakers after TAVR varied by THV type: (BEV) 4.0%, (SEV) 69.3%, and (MEV) 63.0% (P < 0.002). The need for a new permanent pacemaker varied by THV type: (BEV) 6.6%, (SEV) 24.0%, and (MEV) 32.8% at 30 days (P < 0.001). At 1 year, permanent pacemaker rates continued to rise, and remained divergent: (BEV) 8.9%, (SEV) 26.9%, and (MEV) 35.9% (P < 0.001). Median length of stay varied according to THV type: (BEV) 1, (SEV) 3, and (MEV) 4 days (P < 0.001 across groups). Crude mortality rates were not statistically different by THV type, either at 30 days (BEV 3.0%, SEV 2.9%, and MEV 0.0%; P = 0.33), or at 1 year (BEV 10.3%, SEV 15.0%, and MEV 8.3%; P = 0.11).

      Conclusions

      The choice of a THV device was associated with significant differences in the need for post-TAVR temporary pacemakers, hospital length of stay, and both early and late pacemaker implantation rates. These differences may have an impact on patient morbidity and resource utilization.

      Résumé

      Contexte

      Le remplacement valvulaire aortique par cathéter (RVAC) peut provoquer des lésions du système de conduction auriculoventriculaire. Nous avons évalué l’effet du type de valve cardiaque implantée par cathétérisme (VCC) sur le taux de mise en place d’un nouveau stimulateur cardiaque et sur la durée de l’hospitalisation.

      Méthodes

      Les patients de tous les établissements hospitaliers de la Colombie-Britannique dans lesquels ont été effectués des RVAC par voie transfémorale entre 2012 et 2016 ont été obligatoirement inscrits dans un registre couplé aux bases de données sur la santé provinciales. Nous avons évalué 1141 patients dont la sténose de la valve aortique native avait été traitée avec succès par un RVAC par voie transfémorale faisant appel à un des 5 principaux types de valve.

      Résultats

      Les valves implantées étaient expansibles par ballonnet (VEB) (n = 728), auto-expansibles (VAE) (n = 341) ou expansibles mécaniquement (VEM) (n = 72). Les caractéristiques cliniques initiales des patients étaient similaires dans tous les groupes : âge moyen de 82,5 ans et présence de plusieurs affections concomitantes. Le risque prédit moyen de mortalité selon les critères de la Society of Thoracic Surgeons était de 6,0 %. La fréquence de la pose d’un stimulateur cardiaque temporaire à demeure après un RVAC variait selon le type de VCC de la manière suivante: VEB, 4,0 %; VAE, 69,3 % et VEM, 63,0 % (p < 0,002). La nécessité d’un nouveau stimulateur cardiaque permanent variait selon le type de VCC de la manière suivante : VEB, 6,6 %; VAE, 24,0 % et VEM, 32,8 % après 30 jours (p < 0,001). Après 1 an, le taux de mise en place d’un stimulateur cardiaque permanent continuait d’augmenter et de varier selon le type de VCC : VEB, 8,9 %; VAE, 26,9 % et VEM, 35,9 % (p < 0,001). La durée médiane du séjour à l’hôpital variait en fonction du type de VCC de la manière suivante : VEB, 1 jour, VAE, 3 jours et VEM, 4 jours (p < 0,001 entre les groupes). Aucune différence statistiquement significative du taux de mortalité brut en fonction du type de VCC n’a été observée, que ce soit après 30 jours (VEB, 3,0 %; VAE, 2,9 % et VEM, 0,0 %; p = 0,33) ou après 1 an (VEB, 10,3 %; VAE, 15,0 % et VEM, 8,3 %; p = 0,11).

      Conclusion

      Le choix du type de VCC a été associé à des différences significatives en ce qui concerne la nécessité de poser un stimulateur cardiaque temporaire après le RVAC, la durée de l’hospitalisation et la fréquence d’implantation d’un stimulateur cardiaque à un stade tant précoce que tardif. Ces différences pourraient avoir des répercussions sur la morbidité des patients et sur l’utilisation des ressources.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Smith C.R.
        • Leon M.B.
        • Mack M.J.
        • et al.
        Transcatheter versus surgical aortic-valve replacement in high-risk patients.
        N Engl J Med. 2011; 364: 2187-2198
        • Leon M.B.
        • Smith C.R.
        • Mack M.J.
        • et al.
        Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.
        N Engl J Med. 2016; 374: 1609-1620
        • Barbanti M.
        • Gulino S.
        • Costa G.
        • Tamburino C.
        Pathophysiology, incidence and predictors of conduction disturbances during transcatheter aortic valve implantation.
        Expert Rev Med Devices. 2017; 14: 135-147
        • Giustino G.
        • van der Boon R.M.
        • Molina-Martin de Nicolas J.
        • et al.
        Impact of permanent pacemaker on mortality after transcatheter aortic valve implantation: the PRAGMATIC (Pooled Rotterdam-Milan-Toulouse in Collaboration) Pacemaker substudy.
        EuroIntervention. 2016; 12: 1185-1193
        • Urena M.
        • Webb J.G.
        • Eltchaninoff H.
        • et al.
        Late cardiac death in patients undergoing transcatheter aortic valve replacement: incidence and predictors of advanced heart failure and sudden cardiac death.
        J Am Coll Cardiol. 2015; 65: 437-448
        • Nazif T.M.
        • Williams M.R.
        • Hahn R.T.
        • et al.
        Clinical implications of new-onset left bundle branch block after transcatheter aortic valve replacement: analysis of the PARTNER experience.
        Eur Heart J. 2014; 35: 1599-1607
        • Piazza N.
        • Onuma Y.
        • Jesserun E.
        • et al.
        Early and persistent intraventricular conduction abnormalities and requirements for pacemaking after percutaneous replacement of the aortic valve.
        JACC Cardiovasc Interv. 2008; 1: 310-316
        • Franzoni I.
        • Latib A.
        • Maisano F.
        • et al.
        Comparison of incidence and predictors of left bundle branch block after transcatheter aortic valve implantation using the CoreValve versus the Edwards valve.
        Am J Cardiol. 2013; 112: 554-559
        • Aktug Ö.
        • Dohmen G.
        • Brehmer K.
        • et al.
        Incidence and predictors of left bundle branch block after transcatheter aortic valve implantation.
        Int J Cardiol. 2012; 160: 26-30
        • Wood D.
        • Lauck S.
        • Cairns J.
        • Humphries K.
        • Webb J.
        The Vancouver Multidisciplinary, Multimodality, but Minimalist Clinical Pathway Facilitates Safe Next Day Discharge Home at Low, Medium, and High Volume Transcatheter Aortic Valve Replacement Centres: the 3M TAVR Study.
        Transcatheter Therapeutics (TCT), Denver, Colorado2017
        • Lauck S.B.
        • Wood D.A.
        • Baumbusch J.
        • et al.
        Vancouver transcatheter aortic valve replacement clinical pathway: minimalist approach, standardized care, and discharge criteria to reduce length of stay.
        Circ Cardiovasc Qual Outcomes. 2016; 9: 312-321
        • van Gils L.
        • Tchetche D.
        • Lhermusier T.
        • et al.
        Transcatheter heart valve selection and permanent pacemaker implantation in patients with pre-existent right bundle branch block.
        J Am Heart Assoc. 2017; 6: e005028
        • Siontis G.C.
        • Jüni P.
        • Pilgrim T.
        • et al.
        Predictors of permanent pacemaker implantation in patients with severe aortic stenosis undergoing TAVR: a meta-analysis.
        J Am Coll Cardiol. 2014; 64: 129-140
        • Nazif T.M.
        • Dizon J.M.
        • Hahn R.T.
        • et al.
        Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry.
        JACC Cardiovasc Interv. 2015; 8: 60-69
        • Abdel-Wahab M.
        • Mehilli J.
        • Frerker C.
        • et al.
        Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valve replacement: the CHOICE randomized clinical trial.
        JAMA. 2014; 311: 1503-1514
        • Pilgrim T.
        • Stortecky S.
        • Nietlispach F.
        • et al.
        Repositionable versus balloon-expandable devices for transcatheter aortic valve implantation in patients with aortic stenosis.
        J Am Heart Assoc. 2016; 5: e004088
        • Feldman T.
        • Reardon M.
        • Rajagopol V.
        • et al.
        A prospective, randomised investigation of a novel transcatheter aortic valve implantation system: the REPRISE III trial.
        EuroPCR, Paris, France2017
        • Wendler O.
        • Schymik G.
        • Treede H.
        • et al.
        SOURCE 3: 1-year outcomes post-transcatheter aortic valve implantation using the latest generation of the balloon-expandable transcatheter heart valve.
        Eur Heart J. 2017; 38: 2717-2726
        • Brignole M.
        • Auricchio A.
        • Baron-Esquivias G.
        • et al.
        2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA).
        Eur Heart J. 2013; 34: 2281-2329
        • Barbanti M.
        • Capranzano P.
        • Ohno Y.
        • et al.
        Early discharge after transfemoral transcatheter aortic valve implantation.
        Heart. 2015; 101: 1485-1490
        • de Torres-Alba F.
        • Kaleschke G.
        • Diller G.P.
        • et al.
        Changes in the pacemaker rate after transition from Edwards SAPIEN XT to SAPIEN 3 transcatheter aortic valve implantation: the critical role of valve implantation height.
        JACC Cardiovasc Interv. 2016; 9: 805-813
        • Tarantini G.
        • Mojoli M.
        • Purita P.
        • et al.
        Unravelling the (arte)fact of increased pacemaker rate with the Edwards SAPIEN 3 valve.
        EuroIntervention. 2015; 11: 343-350
        • Tchetche D.
        Thirty-day outcomes of a new self-expanding transcatheter heart valve.
        EuroPCR, Paris, France2017
        • Perlman G.Y.
        • Cheung A.
        • Dumont E.
        • et al.
        Transcatheter aortic valve replacement with the Portico valve: one-year results of the early Canadian experience.
        EuroIntervention. 2017; 12: 1653-1659
        • Hamm K.
        • Reents W.
        • Zacher M.
        • et al.
        Transcatheter aortic valve implantation using the ACURATE TA and ACURATE neo valves: a four-year single-centre experience.
        EuroIntervention. 2017; 13: 53-59
        • Orlando R.
        • Pennant M.
        • Rooney S.
        • et al.
        Cost-effectiveness of transcatheter aortic valve implantation (TAVI) for aortic stenosis in patients who are high risk or contraindicated for surgery: a model-based economic evaluation.
        Health Technol Assess. 2013; 17: 1-86
        • Arnold S.V.
        • Lei Y.
        • Reynolds M.R.
        • et al.
        Costs of periprocedural complications in patients treated with transcatheter aortic valve replacement: results from the Placement of Aortic Transcatheter Valve trial.
        Circ Cardiovasc Interv. 2014; 7: 829-836
        • Naber C.
        • Thoenes M.
        • Bramlage P.
        • Wasem J.
        The impact of TAVI related permanent pacemaker implantation on the German healthcare system.
        EuroPCR, Paris, France2014
        • Asgar A.W.
        • Lauck S.
        • Ko D.
        • et al.
        The transcatheter aortic valve implantation (TAVI) quality report: a call to arms for improving quality in Canada.
        Can J Cardiol. 2018; 34: 330-332
        • Meredith I.T.
        • Dumonteil N.
        • Blackman D.J.
        • et al.
        Repositionable percutaneous aortic valve implantation with the LOTUS valve: 30-day and 1-year outcomes in 250 high-risk surgical patients.
        EuroIntervention. 2017; 13: 788-795