Advertisement
Canadian Journal of Cardiology

Acute Heart Rate-Dependent Hemodynamic Function of the Heart in the Post-Myocardial Infarction Rat Model: Change Over Time

Published:August 10, 2018DOI:https://doi.org/10.1016/j.cjca.2018.08.009

      Abstract

      Background

      Optimal heart rate (HR) for acute hemodynamic efficiency in heart failure (HF) is unknown.

      Methods

      Wistar-Kyoto rats were followed-up for 3 and 7 days, 1 or 2 months after myocardial infarction (MI) or sham operation (ShO) and left ventricle (LV) pressure-volume (PV) loops were obtained at various HRs: baseline 400 beats per minute (bpm), reduced by ivabradine to 320 bpm, increased by atrial pacing to 480 bpm, under normal conditions and after preload increase (PI).

      Results

      In the ShO group, PI augmented cardiac output (CO) by 55%, 67%, 84% at reduced, baseline, and increased HR, respectively. In post-MI rats, PI augmented CO 3 and 7 days, but not 1 and 2 months after MI. At increased HR, in response to PI, CO increased 3 and 7 days, tended to fall 1 and 2 months after MI; this hemodynamic response was salvaged by HR reduction. Further beneficial effects of HR reduction included reduction of LV end-diastolic pressure, increase of ejection fraction, contractility and relaxation velocity 1 and 2 months after MI.

      Conclusions

      In a rat HF model, optimal HR with regard to acute hemodynamic performance is shifted. Whereas in ShO rats increased HR facilitates CO increase induced by PI, in HF rats, such increase reduces CO, and HR reduction has beneficial effects. Thus, besides reducing progression of HF, HR-reducing interventions also offer immediate hemodynamic benefits.

      Résumé

      Contexte

      La fréquence cardiaque optimale pour améliorer l’efficacité hémodynamique à court terme chez les patients atteints d’insuffisance cardiaque est inconnue.

      Méthodologie

      On a effectué un suivi chez des rats Wistar-Kyoto 3 jours, 7 jours et 1 ou 2 mois après un infarctus du myocarde ou une opération fictive et on a enregistré des boucles pression-volume du ventricule gauche à diverses fréquences cardiaques : fréquence initiale de 400 battements par minute (bpm), fréquence réduite à 320 bpm par l’administration d’ivabradine, fréquence haussée à 480 bpm par stimulation auriculaire dans des conditions normales, et après une augmentation de la précharge.

      Résultats

      Dans le groupe de rats ayant subi une opération fictive, l’augmentation de la précharge a produit un accroissement du débit cardiaque de 55 % à la fréquence cardiaque réduite, de 67 % à la fréquence cardiaque initiale et de 84 % à la fréquence cardiaque haussée. Chez les rats ayant présenté un infarctus du myocarde, l’augmentation de la précharge a produit un accroissement du débit cardiaque 3 et 7 jours après l’infarctus, mais pas 1 et 2 mois après. À la fréquence cardiaque haussée, en réponse à l’augmentation de la précharge, le débit cardiaque avait augmenté à 3 et à 7 jours et tendait à diminuer 1 et 2 mois après l’infarctus; cette réponse hémodynamique a été modifiée par la réduction de la fréquence cardiaque. Parmi les autres bienfaits de la réduction de la fréquence cardiaque, on compte la diminution de la pression ventriculaire gauche en fin de diastole et l’augmentation de la fraction d’éjection, de la contractilité et de la vitesse de relaxation 1 et 2 mois après l’infarctus du myocarde.

      Conclusions

      Dans un modèle d’insuffisance cardiaque chez le rat, la fréquence cardiaque optimale pour l’amélioration du rendement hémodynamique à court terme varie. Chez les rats ayant subi une opération fictive, une fréquence cardiaque haussée a favorisé l’accroissement du débit cardiaque induit par une augmentation de la précharge; toutefois, chez les rats atteints d’insuffisance cardiaque, une fréquence cardiaque haussée a réduit le débit cardiaque, tandis qu’une fréquence cardiaque réduite a eu des effets bénéfiques. Ainsi, en plus de ralentir l’évolution de l’insuffisance cardiaque, les interventions visant à réduire la fréquence cardiaque offrent également des bienfaits immédiats sur le plan hémodynamique.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fox K.
        • Borer J.S.
        • Camm A.J.
        • et al.
        Resting heart rate in cardiovascular disease.
        J Am Coll Cardiol. 2007; 50: 823-830
        • Gullestad L.
        • Wikstrand J.
        • Deedwania P.
        • et al.
        What resting heart rate should one aim for when treating patients with heart failure with a beta-blocker? Experiences from the Metoprolol Controlled Release/Extended Release Randomized Intervention Trial in Chronic Heart Failure (MERIT-HF).
        J Am Coll Cardiol. 2005; 45: 252-259
        • Hasenfuss G.
        • Holubarsch C.
        • Hermann H.P.
        • Astheimer K.
        • Pleske B.
        • Just H.
        Influence of the force–frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy.
        Eur Heart J. 1994; 15: 164-170
        • Dobre D.
        • Borer J.S.
        • Fox K.
        • et al.
        Heart rate: a prognostic factor and therapeutic target in chronic heart failure: the distinct roles of drugs with heart rate-lowering properties.
        Eur J Heart Failure. 2014; 16: 76-85
        • Mączewski M.
        • Mackiewicz U.
        Effect of metoprolol and ivabradine on left ventricular remodelling and Ca2+ handling in the post-infarction rat heart.
        Cardiovasc Res. 2008; 79: 42-51
        • Kitai T.
        • Grodin J.L.
        • Mentz R.J.
        • et al.
        Insufficient reduction in heart rate during hospitalization despite beta-blocker treatment in acute decompensated heart failure: insights from the ASCEND-HF trial.
        Eur J Heart Failure. 2017; 19: 241-249
        • Ponikowski P.
        • Voors A.A.
        • Anker S.D.
        • et al.
        2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC); developed with the special contribution of the Heart Failure Association (HFA) of the ESC.
        Eur Heart J. 2016; 37: 2129-2200
        • Mączewski M.
        • Mączewska J.
        Hypercholesterolemia exacerbates ventricular remodeling in the rat model of myocardial infarction.
        J Card Failure. 2006; 12: 399-405
        • Pfeffer J.M.
        • Pfeffer M.A.
        • Fletcher P.J.
        • Braunwald E.
        Progressive ventricular remodeling in rat with myocardial infarction.
        Am J Physiol Heart Circ Physiol. 1991; 260: H1406-H1414
        • Mackiewicz U.
        • Mączewski M.
        • Klemenska E.
        • et al.
        Brief postinfarction calcineurin blockade affects left ventricular remodeling and Ca2+ handling in the rat.
        J Mol Cell Cardiol. 2009; 48: 1307-1315
        • Wang J.
        • Nagueh S.F.
        Current perspectives on cardiac function in patients with diastolic heart failure.
        Circulation. 2009; 119: 1146-1157
        • Heusch G.
        Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents.
        Br J Pharmacol. 2008; 153: 1589-1601
        • Fukuta H.
        • Little W.C.
        The cardiac cycle and the physiological basis of left ventricular contraction, ejection, relaxation, and filling.
        Heart Failure Clin. 2008; 4: 1-11
        • Little W.C.
        Diastolic dysfunction beyond distensibility. Adverse Effects of Ventricular Dilatation.
        Circulation. 2005; 112: 2888-2890
        • Toyota E.
        • Ogasawara Y.
        • Hiramatsu O.
        • et al.
        Dynamics of flow velocities in endocardial and epicardial coronary arterioles.
        Am J Physiol Heart Circ Physiol. 2005; 288: H1598-H1603
        • Meiler S.E.L.
        • Boudoulas H.
        • Unveferth D.V.
        • Leier C.V.
        Diastolic time in congestive heart failure.
        Am Heart J. 1987; 114: 1192-1198
        • Hasegawa T.
        • Sugiura T.
        • Matsutani M.
        • Sumimoto T.
        • Iwasaka T.
        • Inada M.
        Diastolic time during static and dynamic exercise in myocardial infarction.
        Chest. 1990; 98: 667-671
        • Weisfeldt M.L.
        • Frederiksen J.W.
        • Yin F.C.P.
        • Weiss J.L.
        Evidence of incomplete left ventricular relaxation in the dog: prediction from the time constant for isovolumic pressure fall.
        J Clin Invest. 1978; 62: 1296-1302
        • Yotti R.
        • Bermejo J.
        • Antoranz J.C.
        • et al.
        A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy.
        Circulation. 2005; 112: 2921-2929
        • Algranati D.
        • Kassab G.S.
        • Lanir Y.
        Why is the subendocardium more vulnerable to ischemia? A new paradigm.
        Am J Physiol Heart Circ Physiol. 2011; 300: H1090-H1100
        • Hasenfuss G.
        • Reinecke H.
        • Studer R.
        • et al.
        Calcium cycling proteins and forcefrequency relationship in heart failure.
        Basic Res Cardiol. 1996; 91: 17-22
        • Pieske B.
        • Sutterlin M.
        • Schmidt-Schweda S.
        • et al.
        Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy: functional evidence for alterations in intracellular Ca2+ handling.
        J Clin Invest. 1996; 98: 764-776
        • Mackiewicz U.
        • Maczewski M.
        • Konior A.
        • et al.
        Sarcolemmal Ca2+-ATPase ability to transport Ca2+ gradually diminishes after myocardial infarction in the rat.
        Cardiovasc Res. 2009; 81: 546-554
        • Colin P.
        • Ghaleh B.
        • Hittinger L.
        • et al.
        Differential effects of heart rate reduction and β-blockade on left ventricular relaxation during exercise.
        Am J Physiol Heart Circ Physiol. 2002; 282: H672-H679
        • Gallet R.
        • Ternacle J.
        • Damy T.
        • et al.
        Hemodynamic effects of ivabradine in addition to dobutamine in patients with severe systolic dysfunction.
        Int J Cardiol. 2014; 176: 450-455
        • De Ferrari G.M.
        • Mazzuero A.
        • Agnesina L.
        • et al.
        Favourable effects of heart rate reduction with intravenous administration of ivabradine in patients with advanced heart failure.
        Eur J Heart Failure. 2008; 10: 550-555
        • Hu K.
        • Naumann A.
        • Fraccarollo D.
        • et al.
        Heart rate reduction by zatebradine reduces infarct size and mortality but promotes remodeling in rats with experimental myocardial infarction.
        Am J Physiol Heart Circ Physiol. 2004; 286: H1281-H1288
        • Lei L.
        • Zhou R.
        • Zheng W.
        • Christensen L.P.
        • Weiss R.M.
        • Tomanek R.J.
        Bradycardia induces angiogenesis, increases coronary reserve, and preserves function of the postinfarcted heart.
        Circulation. 2004; 110: 796-802
        • Bolter C.P.
        • Atkinson K.J.
        Maximum heart rate responses to exercise and isoproterenol in the trained rat.
        Am J Physiol Regul Integr Comp Physiol. 1988; 254: R834-R839
        • Milani-Nejad N.
        • Janssen P.M.L.
        Small and large animal models in cardiac contraction research: advantages and disadvantages.
        Pharmacol Ther. 2014; 141: 235-249
        • Taylor D.G.
        • Parilak L.D.
        • LeWinter M.M.
        • Knot H.J.
        Quantification of the rat left ventricle force and Ca2+–frequency relationships: similarities to dog and human.
        Cardiovasc Res. 2004; 61: 77-86
        • Metra M.
        • Torp-Pedersen C.
        • Cleland J.G.F.
        • et al.
        Should beta-blocker therapy be reduced or withdrawn after an episode of decompensated heart failure? Results from COMET.
        Eur J Heart Failure. 2007; 9: 901-909