Advertisement
Canadian Journal of Cardiology
Systematic Review/Meta-analysis| Volume 34, ISSUE 12, P1581-1589, December 2018

Determining the Optimal Systolic Blood Pressure for Hypertensive Patients: A Network Meta-analysis

  • Yue Fei
    Affiliations
    Division of Clinical Pharmacology and Therapeutics, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
    Search for articles by this author
  • Man-Fung Tsoi
    Affiliations
    Division of Clinical Pharmacology and Therapeutics, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
    Search for articles by this author
  • Bernard Man Yung Cheung
    Correspondence
    Corresponding author: Dr Bernard M. Y. Cheung, University Department of Medicine, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China. Tel.: +852-2255-4347; fax: +852-2818-64.
    Affiliations
    Division of Clinical Pharmacology and Therapeutics, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China

    State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China

    Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
    Search for articles by this author
Published:August 10, 2018DOI:https://doi.org/10.1016/j.cjca.2018.08.013

      Abstract

      Background

      There is clinical trial evidence that lowering systolic blood pressure (SBP) to < 120 mm Hg is beneficial, and this has influenced the latest American guideline on hypertension. We therefore used network meta-analysis to study the association between SBP and cardiovascular outcomes.

      Methods

      We searched for randomized controlled trials targeting different blood pressure levels that reported cardiovascular events. The mean achieved SBP in each trial was classified into 5 groups (110-119, 120-129, 130-139, 140-149, and 150-159 mm Hg). The primary variables of cardiovascular mortality, stroke, and myocardial infarction were assessed using frequentist and Bayesian approaches.

      Results

      Fourteen trials with altogether 44,015 patients were included. Stroke and major adverse cardiovascular events were reduced when lowering SBP to 120-129 mm Hg compared with 130-139 mm Hg (odds ratio [OR] 0.83, 95% confidence interval [CI] 0.69-0.99 and OR 0.84, 95% CI 0.73-0.96), 140-149 mm Hg (OR 0.73, 95% CI 0.55-0.97 and OR 0.74, 95% CI 0.60-0.90), and 150-159 mm Hg (OR 0.43, 95% CI 0.26-0.71 and OR 0.41, 95% CI 0.30-0.57), respectively. More intensive control to < 120 mm Hg further reduced stroke (OR 0.58, 95% CI 0.38-0.87; OR 0.51, 95% CI 0.32-0.81; and OR 0.30, 95% CI 0.16-0.56). In contrast, SBP ≥ 150 mm Hg increased myocardial infarction and cardiovascular mortality compared with 120-129 mm Hg (OR 1.73, 95% CI 1.06-2.82 and OR 2.18, 95% CI 1.32-3.59) and 130-139 mm Hg (OR 1.53, 95% CI 1.01-2.32 and OR 1.71, 95% CI 1.11-2.61). No significant relationship between SBP and all-cause mortality was found.

      Conclusions

      SBP < 130 mm Hg is associated with a lower risk of stroke and major adverse cardiovascular events. Further lowering to < 120 mm Hg can be considered to reduce stroke risk if the therapy is tolerated. Long-term SBP should not exceed 150 mm Hg because of the increased risk of myocardial infarction and cardiac deaths.

      Résumé

      Contexte

      Des essais cliniques ont démontré l’effet bénéfique de l’abaissement de la pression artérielle systolique (PAS) à une valeur inférieure à 120 mmHg, ce qui a amené des modifications de la version la plus récente des lignes directrices sur l’hypertension aux États-Unis. Par conséquent, nous avons effectué une méta-analyse en réseau afin d’étudier l’association entre la PAS et les résultats cardiovasculaires.

      Méthodologie

      Nous avons recensé les essais contrôlés et avec répartition aléatoire qui ciblaient différents niveaux de pression artérielle et faisaient état des événements cardiovasculaires. Cinq groupes ont été constitués en fonction de la PAS moyenne atteinte dans chaque essai (110 à 119, 120 à 129, 130 à 139, 140 à 149 et 150 à 159 mmHg). Les principales variables de la mortalité cardiovasculaire, de l’accident vasculaire cérébral (AVC) et de l’infarctus du myocarde ont été évaluées par les méthodes fréquentiste et bayésienne.

      Résultats

      Quatorze essais cliniques auxquels participaient 44 015 patients au total ont été inclus. Le nombre d’AVC et d’événements cardiovasculaires indésirables majeurs était moins élevé après l’abaissement de la PAS à 120-129 mmHg, comparativement à 130-139 mmHg (rapport de cotes [RC] de 0,83, intervalle de confiance [IC] à 95 % de 0,69 à 0,99 et RC de 0,84, IC à 95 % de 0,73 à 0,96), à 140-149 mmHg (RC de 0,73, IC à 95 % de 0,55 à 0,97 et RC de 0,74, IC à 95 % de 0,60 à 0,90) et à 150-159 mmHg (RC de 0,43, IC à 95 % de 0,26 à 0,71 et RC de 0,41, IC à 95 % de 0,30 à 0,57), respectivement. Une réduction plus marquée jusqu’à une valeur inférieure à 120 mmHg réduisait encore davantage le nombre d’AVC (RC de 0,58, IC à 95 % de 0,38 à 0,87; RC de 0,51, IC à 95 % de 0,32 à 0,81; et RC de 0,30, IC à 95 % de 0,16 à 0,56). Par contre, une PAS égale ou supérieure à 150 mmHg avait pour effet d’augmenter le nombre d’infarctus du myocarde et la mortalité cardiovasculaire par rapport aux valeurs comprises entre 120 et 129 mmHg (RC de 1,73, IC à 95 % de 1,06 à 2,82 et RC de 2,18, IC à 95 % de 1,32 à 3,59) et entre 130 et 139 mmHg (RC de 1,53, IC à 95 % de 1,01 à 2,32 et RC de 1,71, IC à 95 % de 1,11 à 2,61). Aucune association significative n’a été notée entre la PAS et la mortalité toutes causes confondues.

      Conclusions

      Une PAS inférieure à 130 mmHg est associée à un risque plus faible d’AVC et d’événement cardiovasculaire indésirable majeur. Une diminution plus marquée à moins de 120 mmHg peut être considérée comme réduisant le risque d’AVC si le traitement est toléré. La valeur de la PAS à long terme ne doit pas dépasser 150 mmHg en raison du risque accru d’infarctus du myocarde et de décès d’origine cardiaque.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • et al.
        Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet. 2004; 364: 937-952
        • Ong K.L.
        • Cheung B.M.
        • Man Y.B.
        • Lau C.P.
        • Lam K.S.
        Prevalence, awareness, treatment, and control of hypertension among United States adults 1999-2004.
        Hypertension. 2007; 49: 69-75
        • Lewington S.
        • Clarke R.
        • Qizilbash N.
        • et al.
        Prospective studies collaboration, age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.
        Lancet. 2002; 360: 1903-1913
        • Rapsomaniki E.
        • Timmis A.
        • George J.
        • et al.
        Blood pressure and incidence of twelve cardiovascular diseases.
        Lancet. 2014; 383: 1899-1911
        • Boutitie F.
        • Gueyffier F.
        • Pocock S.
        • et al.
        • INDANA Project Steering Committee
        J-shaped relationship between blood pressure and mortality in hypertensive patients: new insights from a meta-analysis of individual-patient data.
        Ann Intern Med. 2002; 136: 438-448
        • Hansson L.
        • Zanchetti A.
        • Carruthers S.G.
        • et al.
        Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group.
        Lancet. 1998; 351: 1755-1762
        • UK Prospective Diabetes Study Group
        Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38.
        BMJ. 1998; 317: 703-713
        • Chobanian A.V.
        • Bakris G.L.
        • Black H.R.
        • et al.
        Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.
        Hypertension. 2003; 42: 1206-1252
        • Mancia G.
        • De Backer G.
        • Dominiczak A.
        • et al.
        2007 Guidelines for the Management of Arterial Hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC).
        J Hypertens. 2007; 25: 1105-1187
        • Cushman W.C.
        • Evans G.W.
        • et al.
        • ACCORD Study Group
        Effects of intensive blood-pressure control in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1575-1585
        • Mancia G.
        • Fagard R.
        • Narkiewicz K.
        • et al.
        2013 ESH/ESC Guidelines for the Management of Arterial Hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC).
        J Hypertens. 2013; 31: 1281-1357
        • James P.A.
        • Oparil S.
        • Carter B.L.
        • et al.
        2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8).
        JAMA. 2014; 311: 507-520
        • Wright Jr., J.T.
        • Williamson J.D.
        • et al.
        • SPRINT Research Group
        A randomized trial of intensive versus standard blood-pressure control.
        N Engl J Med. 2015; 373: 2103-2116
        • Whelton P.K.
        • Carey M.R.
        • Aronow S.W.
        • et al.
        2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults.
        J Am Coll Cardiol. 2018; 71: 2199-2269
        • Rucker G.
        Network meta-analysis, electrical networks and graph theory.
        Res Synth Methods. 2012; 3: 312-324
        • Salanti G.
        • Higgins J.P.
        • Ades A.E.
        • Ioannidis J.P.
        Evaluation of networks of randomized trials.
        Stat Methods Med Res. 2008; 17: 279-301
        • Estacio R.O.
        • Coll J.R.
        • Tran Z.V.
        • Schrier R.W.
        Effect of intensive blood pressure control with valsartan on urinary albumin excretion in normotensive patients with type 2 diabetes.
        Am J Hypertens. 2006; 19: 1241-1248
        • Wright Jr., J.T.
        • Bakris G.
        • Greene T.
        Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial.
        JAMA. 2002; 288: 2421-2431
        • Schrier R.W.
        • Estacio R.O.
        • Esler A.
        • Mehler P.
        Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes.
        Kidney Int. 2002; 61: 1086-1097
        • Ruggenenti P.
        • Perna A.
        • Loriga G.
        • et al.
        Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial.
        Lancet. 2005; 365: 939-946
        • Benavente O.R.
        • Coffey C.S.
        • et al.
        • SPS3 Study Group
        Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial.
        Lancet. 2013; 382: 507-515
        • Sarnak M.J.
        • Greene T.
        • Wang X.
        • et al.
        The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study.
        Ann Intern Med. 2005; 142: 342-351
        • JATOS Study Group
        Principal results of the Japanese trial to assess optimal systolic blood pressure in elderly hypertensive patients (JATOS).
        Hypertens Res. 2008; 31: 2115-2127
        • Ogihara T.
        • Saruta T.
        • Rakugi H.
        • et al.
        Target blood pressure for treatment of isolated systolic hypertension in the elderly: valsartan in elderly isolated systolic hypertension study.
        Hypertension. 2010; 56: 196-202
        • Wei Y.
        • Jin Z.
        • Shen G.
        • et al.
        Effects of intensive antihypertensive treatment on Chinese hypertensive patients older than 70 years.
        J Clin Hypertens (Greenwich). 2013; 15: 420-427
        • Hannson L.
        The BBB study: the effect of intensified antihypertensive treatment on the level of blood pressure, side-effects, morbidity and mortality in “well-treated” hypertensive patients.
        Behandla Blodtryck Bättre. Blood Press. 1994; 3: 248-254
        • Verdecchia P.
        • Staessen J.A.
        • Angeli F.
        • et al.
        Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial.
        Lancet. 2009; 374: 525-533
        • Asayama K.
        • Ohkubo T.
        • Metoki H.
        • et al.
        Hypertension Objective Treatment Based on Measurement by Electrical Devices of Blood Pressure (HOMED-BP). Cardiovascular outcomes in the first trial of antihypertensive therapy guided by self-measured home blood pressure.
        Hypertens Res. 2012; 35: 1102-1110
        • Mant J.
        • McManus R.J.
        • Roalfe A.
        • et al.
        Different systolic blood pressure targets for people with history of stroke or transient ischaemic attack: PAST-BP (Prevention After Stroke—Blood Pressure) randomised controlled trial.
        BMJ. 2016; 352: i708
        • Schrier R.
        • McFann K.
        • Johnson A.
        • et al.
        Cardiac and renal effects of standard versus rigorous blood pressure control in autosomal-dominant polycystic kidney disease: results of a seven-year prospective randomized study.
        J Am Soc Nephrol. 2002; 13: 1733-1739
        • Bress A.P.
        • Tanner R.M.
        • Hess R.
        • et al.
        Generalizability of SPRINT results to the U.S. Adult Population.
        J Am Coll Cardiol. 2016; 67: 463-472
        • Kjeldsen S.E.
        • Mancia G.
        Unobserved automated office blood pressure measurement in the Systolic Blood Pressure Intervention Trial (SPRINT): systolic blood pressure treatment target remains below 140 mm Hg.
        Eur Heart J Cardiovasc Pharmacother. 2016; 2: 79-80
        • Messerli F.H.
        • Mancia G.
        • Conti C.R.
        • et al.
        Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous?.
        Ann Intern Med. 2006; 144: 884-893
        • Chalmers J.
        Is a blood pressure target of < 130/80 mm Hg still appropriate for high-risk patients?.
        Circulation. 2011; 124: 1700-1702
        • Bangalore S.
        • Messerli F.H.
        • Wun C.C.
        • et al.
        J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) trial.
        Eur Heart J. 2010; 31: 2897-2908
        • McEvoy J.W.
        • Chen Y.
        • Rawlings A.
        • et al.
        Diastolic blood pressure, subclinical myocardial damage, and cardiac events: implications for blood pressure control.
        J Am Coll Cardiol. 2016; 68: 1713-1722
        • Park J.H.
        • Ovbiagele B.
        Post-stroke diastolic blood pressure and risk of recurrent vascular events.
        Eur J Neurol. 2017; 24: 1416-1423
        • Blanco P.J.
        • Müller L.O.
        • Spence J.D.
        Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease.
        Stroke Vasc Neurol. 2017; 2: 108-117
        • Valdés Hernández Mdel C.
        • Maconick L.C.
        • Muñoz Maniega S.
        • et al.
        A comparison of location of acute symptomatic vs. ‘silent’ small vessel lesions.
        Int J Stroke. 2015; 10: 1044-1050
        • Spence J.D.
        Antihypertensive drugs and prevention of atherosclerotic stroke.
        Stroke. 1986; 17: 808-810
        • Bangalore S.
        • Toklu B.
        • Gianos E.
        • et al.
        Optimal systolic blood pressure target after SPRINT: insights from a network meta-analysis of randomized trials.
        Am J Med. 2017; 130 (e8): 707-719
        • Bundy J.D.
        • Li C.
        • Stuchlik P.
        • et al.
        Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis.
        JAMA Cardiol. 2017; 2: 775-781
        • Lv J.C.
        • Neal B.
        • Ehteshami P.
        • et al.
        Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: a systematic review and meta-analysis.
        PLoS Med. 2012; 9e1001293
        • Xie X.
        • Atkins E.
        • Lv J.
        • et al.
        Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis.
        Lancet. 2016; 387: 435-443
        • Emdin C.A.
        • Rahimi K.
        • Neal B.
        • et al.
        Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis.
        JAMA. 2015; 313: 603-615
        • Brunström M.
        • Carlberg B.
        Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses.
        BMJ. 2016; 352: i717
        • Ettehad D.
        • Emdin C.A.
        • Kiran A.
        • et al.
        Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis.
        Lancet. 2016; 387: 957-967
        • Rahimi K.
        • MacMahon S.
        Blood pressure management in the 21st century: maximizing gains and minimizing waste.
        Circulation. 2013; 128: 2283-2285
        • Finnegan T.P.
        • Spence J.D.
        • Wong D.G.
        • Wells G.A.
        Blood pressure measurement in the elderly: correlation of arterial stiffness with difference between intra-arterial and cuff pressures.
        J Hypertens. 1985; 3: 231-235
        • Spence J.D.
        • Sibbald W.J.
        • Cape R.D.
        Pseudohypertension in the elderly.
        Clin Sci Mol Med. 1978; 55: 399-402s
        • Spence J.D.
        • Sibbald W.J.
        • Cape R.D.
        Direct, indirect and mean blood pressures in hypertensive patients: the problem of cuff artefact due to arterial wall stiffness, and a partial solution.
        Clin Invest Med. 1979; 2: 165-173