Advertisement
Canadian Journal of Cardiology
Clinical Research| Volume 34, ISSUE 12, P1618-1623, December 2018

Carotid Intima–Media Thickness in Children and Adolescents With Congenital Heart Disease

  • Barbara Reiner
    Correspondence
    Corresponding author: Barbara Reiner, Institute of Preventive Pediatrics, Technical University Munich, Uptown München Campus D, Georg-Brauchle-Ring 60/62, D-80992 Munich, Germany. Phone: +49 89 289 24732; fax: +49 89 289 24572.
    Affiliations
    Department of Paediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Technical University Munich, Munich, Germany

    Institute of Preventive Pediatrics, Technical University Munich, Munich, Germany
    Search for articles by this author
  • Renate Oberhoffer
    Affiliations
    Department of Paediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Technical University Munich, Munich, Germany

    Institute of Preventive Pediatrics, Technical University Munich, Munich, Germany
    Search for articles by this author
  • Anna-Luisa Häcker
    Affiliations
    Department of Paediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Technical University Munich, Munich, Germany

    Institute of Preventive Pediatrics, Technical University Munich, Munich, Germany
    Search for articles by this author
  • Peter Ewert
    Affiliations
    Department of Paediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Technical University Munich, Munich, Germany
    Search for articles by this author
  • Jan Müller
    Affiliations
    Department of Paediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Technical University Munich, Munich, Germany

    Institute of Preventive Pediatrics, Technical University Munich, Munich, Germany
    Search for articles by this author
Published:October 05, 2018DOI:https://doi.org/10.1016/j.cjca.2018.09.012

      Abstract

      Background

      With increased long-term survival, children with congenital heart disease (CHD) are at increased risk of early-onset adult cardiovascular disease. Carotid intima–media thickness (cIMT) is a surrogate marker of atherosclerosis. The aim of this present study was to detect high-risk diagnostic subgroups by measuring cIMT and determine its correlates in children with CHD and subgroups of CHD compared with healthy controls.

      Methods

      This cross-sectional study enrolled 385 patients (138 girls) aged 5 to 18 years (12.3 ± 3.3) who were recruited between May 2015 and June 2017. cIMT was measured using B-mode ultrasound. Height, weight, body mass index, age, mean arterial pressure, pulse-wave velocity, and central systolic blood pressure were assessed as possible risk factors. For subgroup analyses, the patients were divided according to the type of their heart defects. Furthermore, patient data were compared with 86 healthy controls (35 girls, 12.8 ± 2.5 years) measured in the same time frame with identical ultrasound protocol.

      Results

      Patients with CHD showed higher cIMT values (cIMT = 0.464 ± 0.039 mm) than healthy controls (cIMT = 0.449 ± 0.045 mm; P = 0.003), even after adjusting for sex, age, height, and weight differences. The highest cIMT values were found in children with coarctation of the aorta (cIMT = 0.486 ± 0.040 mm; P < 0.001) and transposition of the great arteries after arterial switch (cIMT 0.488 ± 0.041 mm; P < 0.001). No correlation was detected between cIMT and mean arterial pressure or pulse-wave velocity, but with central systolic blood pressure (P = 0.015; r = 0.150).

      Conclusions

      Children with CHD have increased cIMT compared with healthy controls, particularly those with coarctation of aorta and transposition of the great arteries.

      Résumé

      Contexte

      Compte tenu de l’allongement de leur survie à long terme, les enfants atteints d’une cardiopathie congénitale (CC) sont exposés à un risque accru de maladie cardiovasculaire précoce à l’âge adulte. L’épaisseur intima-média de la carotide (EIMc) est un marqueur de substitution de l’athérosclérose. L’objectif de la présente étude était d’utiliser la mesure de l’EIMc pour repérer les sous-groupes de diagnostic à haut risque et déterminer les corrélats de ce paramètre chez les enfants atteints d’une CC et les sous-groupes de CC comparativement à des témoins en bonne santé.

      Méthodologie

      Cette étude transversale portait sur 385 patients (dont 138 filles) âgés de 5 à 18 ans (12,3 ± 3,3), recrutés entre mai 2015 et juin 2017. L’EIMc a été mesurée par échographie en mode B. La taille, le poids, l’indice de masse corporelle, l’âge, la pression artérielle moyenne, la vitesse de propagation de l’onde de pouls et la pression artérielle centrale systolique ont été évalués à titre de facteurs de risque possibles. Pour les analyses des sous-groupes, les patients ont été regroupés en fonction du type de cardiopathie dont ils étaient atteints. De plus, les données des patients ont été comparées avec celles de 86 témoins en bonne santé (dont 35 filles, 12,8 ± 2,5 ans) obtenues durant la même période et conformément au même protocole d’échographie.

      Résultats

      Chez les patients atteints d’une CC, l’EIMc était plus élevée (EIMc = 0,464 ± 0,039 mm) que chez les témoins en bonne santé (EIMc = 0,449 ± 0,045 mm; p = 0,003), même après ajustement en fonction du sexe, de l’âge, de la taille et du poids. Les valeurs maximales de l’EIMc ont été observées dans les cas de coarctation de l’aorte (EIMc = 0,486 ± 0,040 mm; p < 0,001) et de transposition des gros vaisseaux après détransposition artérielle (EIMc = 0,488 ± 0,041 mm; p < 0,001). Une corrélation a été observée entre l’EIMc et la pression artérielle centrale systolique (p = 0,015; r = 0,150), mais pas avec la pression artérielle moyenne ou la vitesse de propagation de l’onde de pouls.

      Conclusions

      L’EIMc était plus élevée chez les enfants atteints d’une CC que chez les témoins en bonne santé, en particulier dans les cas de coarctation de l’aorte et de transposition des grands vaisseaux.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tarp J.B.
        • Jensen A.S.
        • Engstrom T.
        • et al.
        Cyanotic congenital heart disease and atherosclerosis.
        Heart. 2017; 103: 897-900
        • Falk E.
        Pathogenesis of atherosclerosis.
        J Am Coll Cardiol. 2006; 47: C7-C12
        • Qu B.
        • Qu T.
        Causes of changes in carotid intima-media thickness: a literature review.
        Cardiovasc Ultrasound. 2015; 13: 46
        • Cooney M.
        • Cooney M.T.
        • Maher V.
        • et al.
        Improvement in the estimation of cardiovascular risk by carotid intima-medial thickness: a report from the Dublin Cardiohealth station study.
        Prev Med Rep. 2015; 2: 725-729
        • Dayem S.M.
        • Battah A.A.
        • El Bohy A.E.
        Assessment of increase in aortic and carotid intimal medial thickness in type 1 diabetic patients.
        Open Access Maced J Med Sci. 2016; 4: 630-635
        • Doneen A.L.
        • Bale B.F.
        Carotid intima-media thickness testing as an asymptomatic cardiovascular disease identifier and method for making therapeutic decisions.
        Postgrad Med. 2013; 125: 108-123
        • Triedman J.K.
        • Newburger J.W.
        Trends in congenital heart disease: the next decade.
        Circulation. 2016; 133: 2716-2733
        • Tutarel O.
        Acquired heart conditions in adults with congenital heart disease: a growing problem.
        Heart. 2014; 100: 1317-1321
        • Vriend J.W.
        • de Groot E.
        • de Waal T.T.
        • et al.
        Increased carotid and femoral intima-media thickness in patients after repair of aortic coarctation: influence of early repair.
        Am Heart J. 2006; 151: 242-247
        • Ou P.
        • Celermajer D.S.
        • Jolivet O.
        • et al.
        Increased central aortic stiffness and left ventricular mass in normotensive young subjects after successful coarctation repair.
        Am Heart J. 2008; 155: 187-193
        • Liao X.
        • Norata G.D.
        • Polak J.F.
        • et al.
        Normative values for carotid intima media thickness and its progression: are they transferrable outside of their cohort of origin?.
        Eur J Prev Cardiol. 2016; 23: 1165-1173
        • de Groot E.
        • Hovingh G.K.
        • Wiegman A.
        • et al.
        Measurement of arterial wall thickness as a surrogate marker for atherosclerosis.
        Circulation. 2004; 109: III33-III38
        • Hacker A.L.
        • Reiner B.
        • Oberhoffer R.
        • et al.
        Increased arterial stiffness in children with congenital heart disease.
        Eur J Prev Cardiol. 2018; 25: 103-109
        • Dalla Pozza R.
        • Ehringer-Schetitska D.
        • Fritsch P.
        • et al.
        Intima media thickness measurement in children: a statement from the Association for European Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention endorsed by the Association for European Paediatric Cardiology.
        Atherosclerosis. 2015; 238: 380-387
        • Weiss W.
        • Gohlisch C.
        • Harsch-Gladisch C.
        • et al.
        Oscillometric estimation of central blood pressure: validation of the Mobil-O-Graph in comparison with the SphygmoCor device.
        Blood Press Monit. 2012; 17: 128-131
        • Hametner B.
        • Wassertheurer S.
        • Kropf J.
        • et al.
        Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements.
        Blood Press Monit. 2013; 18: 173-176
        • Cole T.J.
        The LMS method for constructing normalized growth standards.
        Eur J Clin Nutr. 1990; 44: 45-60
        • Ou P.
        • Celermajer D.S.
        • Mousseaux E.
        • et al.
        Vascular remodeling after "successful" repair of coarctation: impact of aortic arch geometry.
        J Am Coll Cardiol. 2007; 49: 883-890
        • Kühn A.
        • Baumgartner D.
        • Baumgartner C.
        • et al.
        Impaired elastic properties of the ascending aorta persist within the first 3 years after neonatal coarctation repair.
        Pediatr Cardiol. 2008; 30: 46
        • Lim H.G.
        • Kim W.H.
        • Lee J.R.
        • Kim Y.J.
        Long-term results of the arterial switch operation for ventriculo-arterial discordance.
        Eur J Cardiothorac Surg. 2013; 43: 325-334
        • Angeli E.
        • Raisky O.
        • Bonnet D.
        • Sidi D.
        • Vouhe P.R.
        Late reoperations after neonatal arterial switch operation for transposition of the great arteries.
        Eur J Cardiothorac Surg. 2008; 34: 32-36
        • Agnoletti G.
        • Ou P.
        • Celermajer D.S.
        • et al.
        Acute angulation of the aortic arch predisposes a patient to ascending aortic dilatation and aortic regurgitation late after the arterial switch operation for transposition of the great arteries.
        J Thorac Cardiovasc Surg. 2008; 135: 568-572
        • Pedra S.R.
        • Pedra C.A.
        • Abizaid A.A.
        • et al.
        Intracoronary ultrasound assessment late after the arterial switch operation for transposition of the great arteries.
        J Am Coll Cardiol. 2005; 45: 2061-2068
        • Mivelaz Y.
        • Leung M.T.
        • Zadorsky M.T.
        • et al.
        Noninvasive assessment of vascular function in postoperative cardiovascular disease (coarctation of the aorta, tetralogy of Fallot, and transposition of the great arteries).
        Am J Cardiol. 2016; 118: 597-602
        • Duffels M.G.
        • Mulder K.M.
        • Trip M.D.
        • et al.
        Atherosclerosis in patients with cyanotic congenital heart disease.
        Circ J. 2010; 74: 1436-1441
        • Giannakoulas G.
        • Dimopoulos K.
        • Engel R.
        • et al.
        Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors.
        Am J Cardiol. 2009; 103: 1445-1450
        • Robustillo-Villarino M.
        • Alegre-Sancho J.J.
        • Rodilla-Sala E.
        • et al.
        Pulse wave velocity and augmentation index are not independently associated with carotid atherosclerosis in patients with rheumatoid arthritis.
        Clin Rheumatol. 2017; 36: 2601-2606
        • Quail M.A.
        • Short R.
        • Pandya B.
        • et al.
        Abnormal wave reflections and left ventricular hypertrophy late after coarctation of the aorta repair.
        Hypertension. 2017; 69: 501-509
        • Quail M.A.
        • Steeden J.A.
        • Knight D.
        • et al.
        Development and validation of a novel method to derive central aortic systolic pressure from the MR aortic distension curve.
        J Magn Reson Imaging. 2014; 40: 1064-1070
        • Waddell T.K.
        • Dart A.M.
        • Medley T.L.
        • et al.
        Carotid pressure is a better predictor of coronary artery disease severity than brachial pressure.
        Hypertension. 2001; 38: 927-931
        • Roman M.J.
        • Devereux R.B.
        • Kizer J.R.
        • et al.
        Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study.
        Hypertension. 2007; 50: 197-203
        • McEniery C.M.
        • Cockcroft J.R.
        • Roman M.J.
        • et al.
        Central blood pressure: current evidence and clinical importance.
        Eur Heart J. 2014; 35: 1719-1725
        • Wang K.L.
        • Cheng H.M.
        • Chuang S.Y.
        • et al.
        Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality?.
        J Hypertens. 2009; 27: 461-467
        • Pasquali S.K.
        • Marino B.S.
        • Powell D.J.
        • et al.
        Following the arterial switch operation, obese children have risk factors for early cardiovascular disease.
        Congenit Heart Dis. 2010; 5: 16-24
        • Skaug E.A.
        • Aspenes S.T.
        • Oldervoll L.
        • et al.
        Age and gender differences of endothelial function in 4739 healthy adults: the HUNT3 Fitness Study.
        Eur J Prev Cardiol. 2013; 20: 531-540
        • Cromwell C.M.
        • Aichele K.R.
        • Oakman J.E.
        • et al.
        Carotid artery IMT, blood pressure, and cardiovascular risk factors in males and females.
        Int J Exerc Sci. 2016; 9: 482-490