Advertisement
Canadian Journal of Cardiology

Mechanisms of Cardiovascular Disease in the Setting of HIV Infection

  • Priscilla Y. Hsue
    Correspondence
    Corresponding author: Dr Priscilla Y. Hsue, Room 5G1 Cardiology, Zuckerberg San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, California 94110, USA. Tel.: +1-415-206-8257; fax: +1-415-206-5447.
    Affiliations
    University of California San Francisco (UCSF), Zuckerberg San Francisco General Hospital, San Francisco, California, USA
    Search for articles by this author
Published:December 28, 2018DOI:https://doi.org/10.1016/j.cjca.2018.12.024

      Abstract

      Although the initial reports of increased cardiovascular (CV) disease in the setting of advanced AIDS were reported approximately 30 years ago, advances in antiretroviral therapy and immediate initiation of therapy on diagnosis have transformed what was once a deadly infectious disease into a chronic health condition. Accordingly, the types of CV diseases occurring in HIV have shifted from pericardial effusions and dilated cardiomyopathy to atherosclerosis and heart failure. The underlying pathophysiology of HIV-associated CV disease remains poorly understood, partly because of the rapidly evolving nature of HIV treatment and because clinical endpoints take many years to develop. The gut plays an important role in the early pathogenesis of HIV infection as HIV preferentially infects CD4+ T cells, 80% of which are located in gut mucosa. The loss of these T cells damages gut mucosa resulting in increased gut permeability and microbial translocation, which incites chronic inflammation and immune activation. Antiretroviral therapy does not cure HIV infection and immune abnormalities persist. These abnormalities correlate with mortality and CV events. The effects of antiretroviral therapy on CV risk are complex; treatment reduces inflammation and other markers of CV risk but induces lipid abnormalities, most commonly hypertriglyceridemia. On a molecular level, monocytes/macrophages, platelet reactivity, and immune cell activation, which play a role in the general population, may be heightened in the setting of HIV and contribute to HIV-associated atherosclerosis. Chronic inflammation represents an inviting therapeutic target in HIV, as it does in uninfected persons with atherosclerosis.

      Résumé

      Même si les premiers signes d’augmentation des maladies cardiovasculaires (CV) en présence du SIDA au stade avancé ont été rapportés il y a environ 30 ans, les progrès réalisés en matière de traitement antirétroviral et l’instauration immédiate du traitement au moment du diagnostic ont transformé ce qui était jadis une maladie infectieuse mortelle en problème de santé chronique. En conséquence, les types de maladies CV survenant en présence d’une infection par le VIH sont passés des épanchements péricardiques et de la cardiomyopathie dilatée à l’athérosclérose et à l’insuffisance cardiaque. La physiopathologie sous-jacente des maladies CV associées au VIH demeure mal comprise, en partie parce que le traitement du VIH a évolué rapidement et que l’élaboration des critères cliniques nécessite de nombreuses années. L’intestin joue un rôle important au début de la pathogenèse de l’infection par le VIH, car le virus infecte préférablement les lymphocytes T CD4+, dont 80 % se trouvent dans la muqueuse intestinale. La perte de ces lymphocytes T endommage la muqueuse intestinale, augmentant ainsi la perméabilité intestinale et permettant la translocation microbienne, ce qui favorise l’inflammation chronique et l’activation immunitaire. Le traitement antirétroviral ne guérit pas l’infection par le VIH, et les anomalies immunitaires persistent. Ces anomalies ont une corrélation avec la mortalité et les événements CV. Les effets du traitement antirétroviral sur le risque CV sont complexes; le traitement réduit l’inflammation et d’autres marqueurs du risque CV, mais induit des anomalies lipidiques, le plus souvent sous forme d’hypertriglycéridémie. Au niveau moléculaire, les monocytes/macrophages, la réactivité plaquettaire et l’activation des cellules immunitaires, qui jouent un rôle dans la population générale, peuvent être augmentés en présence du VIH et contribuer à l’athérosclérose associée au VIH. L’inflammation chronique représente une cible tentante dans le traitement du VIH, comme chez les personnes non infectées atteintes d’athérosclérose.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Samji H.
        • Cescon A.
        • Hogg R.S.
        • et al.
        Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada.
        PloS One. 2013; 8e81355
        • Ingle S.M.
        • May M.T.
        • Gill M.J.
        • et al.
        Impact of risk factors for specific causes of death in the first and subsequent years of antiretroviral therapy among HIV-infected patients.
        Clin Infect Dis. 2014; 59: 287-297
        • Taelman H.
        • Kagame A.
        • Batungwanayo J.
        • et al.
        Pericardial effusion and HIV infection.
        Lancet. 1990; 335: 924
        • Blanchard D.G.
        • Hagenhoff C.
        • Chow L.C.
        • McCann H.A.
        • Dittrich H.C.
        Reversibility of cardiac abnormalities in human immunodeficiency virus (HIV)-infected individuals: a serial echocardiographic study.
        J Am Coll Cardiol. 1991; 17: 1270-1276
        • Heidenreich P.A.
        • Eisenberg M.J.
        • Kee L.L.
        • et al.
        Pericardial effusion in AIDS: incidence and survival.
        Circulation. 1995; 92: 3229-3234
        • d'Amati G.
        • Kwan W.
        • Lewis W.
        Dilated cardiomyopathy in a zidovudine-treated AIDS patient.
        Cardiovasc Pathol. 1992; 1: 317-320
        • Hakim J.G.
        • Matenga J.A.
        • Siziya S.
        Myocardial dysfunction in human immunodeficiency virus infection: an echocardiographic study of 157 patients in hospital in Zimbabwe.
        Heart. 1996; 76: 161-165
        • Herskowitz A.
        • Willoughby S.B.
        • Baughman K.L.
        • Schulman S.P.
        • Bartlett J.D.
        Cardiomyopathy associated with antiretroviral therapy in patients with HIV infection: a report of six cases.
        Ann Intern Med. 1992; 116: 311-313
        • Lewis W.
        • Simpson J.F.
        • Meyer R.R.
        Cardiac mitochondrial DNA polymerase-gamma is inhibited competitively and noncompetitively by phosphorylated zidovudine.
        Circ Res. 1994; 74: 344-348
        • Malu K.
        • Longo-Mbenza B.
        • Lurhuma Z.
        • Odio W.
        Pericarditis and acquired immunodeficiency syndrome.
        Arch Mal Coeur Vaiss. 1988; 81: 207-211
        • Henry K.
        • Melroe H.
        • Huebesch J.
        • Hermundson J.
        • Simpson J.
        Atorvastatin and gemfibrozil for protease-inhibitor-related lipid abnormalities.
        Lancet. 1998; 352: 1031-1032
        • Behrens G.
        • Schmidt H.
        • Meyer D.
        • Stoll M.
        • Schmidt R.E.
        Vascular complications associated with use of HIV protease inhibitors.
        Lancet. 1998; 351: 1958
        • Freiberg M.S.
        • Chang C.C.
        • Kuller L.H.
        • et al.
        HIV infection and the risk of acute myocardial infarction.
        JAMA Intern Med. 2013; 173: 614-622
        • Beckman J.A.
        • Duncan M.S.
        • Alcorn C.W.
        • et al.
        Association of human immunodeficiency virus infection and risk of peripheral artery disease.
        Circulation. 2018; 138: 255-265
        • Freiberg M.S.
        • Chang C.H.
        • Skanderson M.
        • et al.
        Association between HIV infection and the risk of heart failure with reduced ejection fraction and preserved ejection fraction in the antiretroviral therapy era: results from the veterans aging cohort study.
        JAMA Cardiol. 2017; 2: 536-546
        • Waters D.D.
        • Hsue P.Y.
        Lipid abnormalities in persons living with HIV infection.
        Can J Cardiol. 2019; 35: 249-259
        • Antonello V.S.
        • Antonello I.C.
        • Grossmann T.K.
        • et al.
        Hypertension—an emerging cardiovascular risk factor in HIV infection.
        J Am Soc Hypertens. 2015; 9: 403-407
        • Rasmussen L.D.
        • Helleberg M.
        • May M.T.
        • et al.
        Myocardial infarction among Danish HIV-infected individuals: population-attributable fractions associated with smoking.
        Clin Infect Dis. 2015; 60: 1415-1423
        • Nix L.M.
        • Tien P.C.
        Metabolic syndrome, diabetes, and cardiovascular risk in HIV.
        Curr HIV/AIDS Rep. 2014; 11: 271-278
        • Pelchen-Matthews A.
        • Ryom L.
        • Borges A.H.
        • et al.
        Aging and the evolution of comorbidities among HIV-positive individuals in a European cohort.
        AIDS. 2018; 32: 2405-2416
        • Shah A.S.V.
        • Stelzle D.
        • Lee K.K.
        • et al.
        Global burden of atherosclerotic cardiovascular disease in people living with the human immunodeficiency virus: a systematic review and meta-analysis.
        Circulation. 2018; 138: 1100-1112
        • Hsue P.Y.
        • Waters D.D.
        Time to recognize HIV infection as a major cardiovascular risk factor.
        Circulation. 2018; 138: 1113-1115
        • Scherzer R.
        • Shah S.J.
        • Secemsky E.
        • et al.
        Association of biomarker clusters with cardiac phenotypes and mortality in patients with HIV infection.
        Circ Heart Fail. 2018; 11: e004312
        • Tincati C.
        • Douek D.C.
        • Marchetti G.
        Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection.
        AIDS Res Ther. 2016; 13: 19
        • Brenchley J.M.
        • Price D.A.
        • Schacker T.W.
        • et al.
        Microbial translocation is a cause of systemic immune activation in chronic HIV infection.
        Nat Med. 2006; 12: 1365-1371
        • Monaco C.L.
        • Gootenberg D.B.
        • Zhao G.
        • et al.
        Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome.
        Cell Host Microbe. 2016; 19: 311-322
        • Dillon S.M.
        • Lee E.J.
        • Kotter C.V.
        • et al.
        An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia.
        Mucosal Immunol. 2014; 7: 983-994
        • Sandler N.G.
        • Wand H.
        • Roque A.
        • et al.
        Plasma levels of soluble CD14 independently predict mortality in HIV infection.
        J Infect Dis. 2011; 203: 780-790
        • Schiattarella G.G.
        • Sannino A.
        • Toscano E.
        • et al.
        Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis.
        Eur Heart J. 2017; 38: 2948-2956
        • Heianza Y.
        • Ma W.
        • Manson J.E.
        • Rexrode K.M.
        • Qi L.
        Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies.
        J Am Heart Assoc. 2017; 6: e004947
        • Albert C.L.
        • Tang W.H.W.
        Metabolic biomarkers in heart failure.
        Heart Fail Clin. 2018; 14: 109-118
        • Shan Z.
        • Clish C.B.
        • Hua S.
        • et al.
        Gut microbial-related choline metabolite trimethylamine-N-oxide is associated with progression of carotid artery atherosclerosis in HIV infection.
        J Infect Dis. 2018; 218: 1474-1479
        • Srinivasa S.
        • Fitch K.V.
        • Lo J.
        • et al.
        Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine.
        AIDS. 2015; 29: 443-452
        • Miller P.E.
        • Haberlen S.A.
        • Brown T.T.
        • et al.
        Brief report: intestinal microbiota-produced trimethylamine-N-oxide and its association with coronary stenosis and HIV serostatus.
        J Acquir Immune Defic Syndr. 2016; 72: 114-118
        • Sandler N.G.
        • Zhang X.
        • Bosch R.J.
        • et al.
        Sevelamer does not decrease lipopolysaccharide or soluble CD14 levels but decreases soluble tissue factor, low-density lipoprotein (LDL) cholesterol, and oxidized LDL cholesterol levels in individuals with untreated HIV infection.
        J Infect Dis. 2014; 210: 1549-1554
        • Tenorio A.R.
        • Chan E.S.
        • Bosch R.J.
        • et al.
        Rifaximin has a marginal impact on microbial translocation, T-cell activation and inflammation in HIV-positive immune non-responders to antiretroviral therapy—ACTG A5286.
        J Infect Dis. 2015; 211: 780-790
        • Arnbjerg C.J.
        • Vestad B.
        • Hov J.R.
        • et al.
        Effect of Lactobacillus rhamnosus GG supplementation on intestinal inflammation assessed by PET/MRI scans and gut microbiota composition in HIV-infected individuals.
        J Acquir Immune Defic Syndr. 2018; 78: 450-457
        • Somsouk M.
        • Dunham R.M.
        • Cohen M.
        • et al.
        The immunologic effects of mesalamine in treated HIV-infected individuals with incomplete CD4+ T cell recovery: a randomized crossover trial.
        PloS One. 2014; 9e116306
        • Barouch D.H.
        • Deeks S.G.
        Immunologic strategies for HIV-1 remission and eradication.
        Science. 2014; 345: 169-174
        • Valdez H.
        Immune restoration after treatment of HIV-1 infection with highly active antiretroviral therapy (HAART).
        AIDS Rev. 2002; 4: 157-164
        • Hunt P.W.
        • Martin J.N.
        • Sinclair E.
        • et al.
        T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy.
        J Infect Dis. 2003; 187: 1534-1543
        • Tenorio A.R.
        • Zheng Y.
        • Bosch R.J.
        • et al.
        Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment.
        J Infect Dis. 2014; 210: 1248-1259
        • Sinha A.
        • Ma Y.
        • Scherzer R.
        • et al.
        Role of T-cell dysfunction, inflammation, and coagulation in microvascular disease in HIV.
        J Am Heart Assoc. 2016; 5: e004243
        • Naeger D.M.
        • Martin J.N.
        • Sinclair E.
        • et al.
        Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease.
        PloS One. 2010; 5e8886
        • Hsue P.Y.
        • Hunt P.W.
        • Sinclair E.
        • et al.
        Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses.
        AIDS. 2006; 20: 2275-2283
        • Parrinello C.M.
        • Sinclair E.
        • Landay A.L.
        • et al.
        Cytomegalovirus immunoglobulin G antibody is associated with subclinical carotid artery disease among HIV-infected women.
        J Infect Dis. 2012; 205: 1788-1796
        • Wang H.
        • Peng G.
        • Bai J.
        • et al.
        Cytomegalovirus infection and relative risk of cardiovascular disease (ischemic heart disease, stroke, and cardiovascular death): a meta-analysis of prospective studies up to 2016.
        J Am Heart Assoc. 2017; 6: e005025
        • Sobieszczanska-Malek M.
        • Korewicki J.
        • Komuda K.
        • et al.
        Heart transplantation and risk of cardiac vasculopathy development: what factors are important?.
        Ann Transplant. 2017; 22: 682-688
        • Hsue P.Y.
        • Lo J.C.
        • Franklin A.
        • et al.
        Progression of atherosclerosis as assessed by carotid intima-media thickness in patients with HIV infection.
        Circulation. 2004; 109: 1603-1608
        • Ho J.E.
        • Scherzer R.
        • Hecht F.M.
        • et al.
        The association of CD4+ T-cell counts and cardiovascular risk in treated HIV disease.
        AIDS. 2012; 26: 1115-1120
        • Thompson-Paul A.M.
        • Lichtenstein K.A.
        • Armon C.
        • et al.
        Cardiovascular disease risk prediction in the HIV outpatient study.
        Clin Infect Dis. 2016; 63: 1508-1516
        • Triant V.A.
        • Regan S.
        • Lee H.
        • et al.
        Association of immunologic and virologic factors with myocardial infarction rates in a US health care system.
        J Acquir Immune Defic Syndr. 2010; 55: 615-619
        • Drozd D.R.
        • Kitahata M.M.
        • Althoff K.N.
        • et al.
        Increased risk of myocardial infarction in HIV-infected individuals in North America compared with the general population.
        J Acquir Immune Defic Syndr. 2017; 75: 568-576
        • Serrano-Villar S.
        • Sainz T.
        • Lee S.A.
        • et al.
        HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality.
        PLoS Pathog. 2014; 10e1004078
        • Serrano-Villar S.
        • Perez-Elias M.J.
        • Dronda F.
        • et al.
        Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio.
        PLoS One. 2014; 9e85798
        • Trickey A.
        • May M.T.
        • Schommers P.
        • et al.
        CD4: CD8 ratio and CD8 count as prognostic markers for mortality in human immunodeficiency virus-infected patients on antiretroviral therapy: the Antiretroviral Therapy Cohort Collaboration (ART-CC).
        Clin Infect Dis. 2017; 65: 959-966
        • Bozzette S.A.
        • Ake C.F.
        • Tam H.K.
        • Chang S.W.
        • Louis T.A.
        Cardiovascular and cerebrovascular events in patients treated for human immunodeficiency virus infection.
        N Engl J Med. 2003; 348: 702-710
        • Friis-Moller N.
        • Sabin C.A.
        • Weber R.
        • et al.
        Combination antiretroviral therapy and the risk of myocardial infarction.
        N Engl J Med. 2003; 349: 1993-2003
        • Group D.S.
        Class of antiretroviral drugs and the risk of myocardial infarction.
        N Engl J Med. 2007; 356: 1723-1735
        • El-Sadr W.M.
        • Lundgren J.
        • Neaton J.D.
        • et al.
        CD4+ count-guided interruption of antiretroviral treatment.
        N Engl J Med. 2006; 355: 2283-2296
        • Kuller L.H.
        • Tracy R.
        • Belloso W.
        • et al.
        Inflammatory and coagulation biomarkers and mortality in patients with HIV infection.
        PLoS Med. 2008; 5e203
        • Lundgren J.D.
        • Babiker A.G.
        • et al.
        • INSIGHT START Study Group
        Initiation of antiretroviral therapy in early asymptomatic HIV infection.
        N Engl J Med. 2015; 373: 795-807
        • Baker J.V.
        • Hullsiek K.H.
        • Engen N.W.
        • et al.
        Early antiretroviral therapy at high CD4 counts does not improve arterial elasticity: a substudy of the Strategic Timing of AntiRetroviral Treatment (START) trial.
        Open Forum Infect Dis. 2016; 3: ofw213
        • Baker J.V.
        • Sharma S.
        • Achhra A.C.
        • et al.
        Changes in cardiovascular disease risk factors with immediate versus deferred antiretroviral therapy initiation among HIV-positive participants in the START (Strategic Timing of Antiretroviral Treatment) trial.
        J Am Heart Assoc. 2017; 6: e004987
        • Sabin C.A.
        • Worm S.W.
        • Weber R.
        • et al.
        Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration.
        Lancet. 2008; 371: 1417-1426
        • Cruciani M.
        • Zanichelli V.
        • Serpelloni G.
        • et al.
        Abacavir use and cardiovascular disease events: a meta-analysis of published and unpublished data.
        AIDS. 2011; 25: 1993-2004
        • Nan C.
        • Shaefer M.
        • Urbaityte R.
        • et al.
        Abacavir use and risk for myocardial infarction and cardiovascular events: pooled analysis of data from clinical trials.
        Open Forum Infect Dis. 2018; 5: ofy086
        • Alvarez A.
        • Orden S.
        • Andujar I.
        • et al.
        Cardiovascular toxicity of abacavir: a clinical controversy in need of a pharmacological explanation.
        AIDS. 2017; 31: 1781-1795
        • Satchell C.S.
        • O'Halloran J.A.
        • Cotter A.G.
        • et al.
        Increased platelet reactivity in HIV-1-infected patients receiving abacavir-containing antiretroviral therapy.
        J Infect Dis. 2011; 204: 1202-1210
        • Hsue P.Y.
        • Hunt P.W.
        • Wu Y.
        • et al.
        Association of abacavir and impaired endothelial function in treated and suppressed HIV-infected patients.
        AIDS. 2009; 23: 2021-2027
        • Stein J.H.
        • Ribaudo H.J.
        • Hodis H.N.
        • et al.
        A prospective, randomized clinical trial of antiretroviral therapies on carotid wall thickness: AIDS Clinical Trial Group Study A5260s.
        AIDS. 2015; 29: 1775-1783
        • Ryom L.
        • Lundgren J.D.
        • El-Sadr W.
        • et al.
        Cardiovascular disease and use of contemporary protease inhibitors: the D:A:D international prospective multicohort study.
        Lancet HIV. 2018; 5: e291-e300
        • Marconi V.C.
        • Duncan M.S.
        • So-Armah K.
        • et al.
        Bilirubin is inversely associated with cardiovascular disease among HIV-positive and HIV-negative individuals in VACS (Veterans Aging Cohort Study).
        J Am Heart Assoc. 2018; 7: e007792
        • Krikke M.
        • Tesselaar K.
        • van den Berk G.E.L.
        • et al.
        The effect of switching protease inhibitors to raltegravir on endothelial function, in HIV-infected patients.
        HIV Clin Trials. 2018; 19: 75-83
        • Gatell J.M.
        • Assoumou L.
        • Moyle G.
        • et al.
        Switching from a ritonavir-boosted protease inhibitor to a dolutegravir-based regimen for maintenance of HIV viral suppression in patients with high cardiovascular risk.
        AIDS. 2017; 31: 2503-2514
        • Alvi R.M.
        • Neilan A.M.
        • Tariq N.
        • et al.
        Protease inhibitors and cardiovascular outcomes in patients with HIV and heart failure.
        J Am Coll Cardiol. 2018; 72: 518-530
        • Duprez D.A.
        • Neuhaus J.
        • Kuller L.H.
        • et al.
        Inflammation, coagulation and cardiovascular disease in HIV-infected individuals.
        PLoS One. 2012; 7e44454
        • Nordell A.D.
        • McKenna M.
        • Borges A.H.
        • et al.
        Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation.
        J Am Heart Assoc. 2014; 3e000844
        • Grund B.
        • Baker J.V.
        • Deeks S.G.
        • et al.
        Relevance of interleukin-6 and D-dimer for serious non-AIDS morbidity and death among HIV-positive adults on suppressive antiretroviral therapy.
        PloS One. 2016; 11e0155100
        • Kim C.J.
        • Rousseau R.
        • Huibner S.
        • et al.
        Impact of intensified antiretroviral therapy during early HIV infection on gut immunology and inflammatory blood biomarkers.
        AIDS. 2017; 31: 1529-1534
        • Hatano H.
        • Scherzer R.
        • Wu Y.
        • et al.
        A randomized controlled trial assessing the effects of raltegravir intensification on endothelial function in treated HIV infection.
        J Acquir Immune Defic Syndr. 2012; 61: 317-325
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • et al.
        Anti-inflammatory therapy with canakinumab for atherosclerotic disease.
        N Engl J Med. 2017; 377: 1119-1131
        • Ridker P.M.
        • MacFadyen J.G.
        • Thuren T.
        • et al.
        Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial.
        Lancet. 2017; 390: 1833-1842
        • Ridker P.M.
        • MacFadyen J.G.
        • Everett B.M.
        • et al.
        Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial.
        Lancet. 2018; 391: 319-328
        • Ridker P.M.
        • Libby P.
        • MacFadyen J.G.
        • et al.
        Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS).
        Eur Heart J. 2018; 39: 3499-3507
        • Toribio M.
        • Fitch K.V.
        • Sanchez L.
        • et al.
        Effects of pitavastatin and pravastatin on markers of immune activation and arterial inflammation in HIV.
        AIDS. 2017; 31: 797-806
        • Lo J.
        • Lu M.T.
        • Ihenachor E.J.
        • et al.
        Effects of statin therapy on coronary artery plaque volume and high-risk plaque morphology in HIV-infected patients with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial.
        Lancet HIV. 2015; 2: e52-e63
        • Eckard A.R.
        • Jiang Y.
        • Debanne S.M.
        • Funderburg N.T.
        • McComsey G.A.
        Effect of 24 weeks of statin therapy on systemic and vascular inflammation in HIV-infected subjects receiving antiretroviral therapy.
        J Infect Dis. 2014; 209: 1156-1164
        • O'Brien M.P.
        • Hunt P.W.
        • Kitch D.W.
        • et al.
        A randomized placebo controlled trial of aspirin effects on immune activation in chronically human immunodeficiency virus-infected adults on virologically suppressive antiretroviral therapy.
        Open Forum Infect Dis. 2017; 4: ofw278
        • Hsue P.Y.
        • Ribaudo H.J.
        • Deeks S.G.
        • et al.
        Safety and impact of low-dose methotrexate on endothelial function and inflammation in individuals with treated human immunodeficiency virus: AIDS Clinical Trial Group Study A5314 [Epub ahead of print].
        Clin Infect Dis. 2018; (accessed February 15, 2019)https://doi.org/10.1093/cid/ciy781
      1. Stein JH, Yeh E, Weber JM, et al. Brachial artery echogenicity and grayscale texture changes in HIV-infected individuals receiving low-dose methotrexate: AIDS Clinical Trial Group Study. Arterioscler Thromb Vasc Biol, in press.

        • Ridker P.M.
        • Everett B.M.
        • Pradham A.
        • et al.
        Low-dose methotrexate for the prevention of atherosclerotic events [Epub ahead of print].
        N Engl J Med. 2018; (accessed February 15, 2019)https://doi.org/10.1056/NELMoa1809798
      2. Hsue PY, Li D, Weigal B, et al. Relationship between leukopoietic activity and arterial inflammation in HIV: effects of IL-1β inhibition. J Am Coll Cardiol, in press.

        • Semple J.W.
        • Italiano Jr., J.E.
        • Freedman J.
        Platelets and the immune continuum.
        Nat Rev Immunol. 2011; 11: 264-274
        • Mancuso M.E.
        • Santagostino E.
        Platelets: much more than bricks in a breached wall.
        Br J Haematol. 2017; 178: 209-219
        • Flaujac C.
        • Boukour S.
        • Cramer-Borde E.
        Platelets and viruses: an ambivalent relationship.
        Cell Mol Life Sci. 2010; 67: 545-556
        • Nkambule B.B.
        • Davison G.
        • Ipp H.
        Platelet leukocyte aggregates and markers of platelet aggregation, immune activation and disease progression in HIV infected treatment naive asymptomatic individuals.
        J Thromb Thrombolysis. 2015; 40: 458-467
        • Jenne C.N.
        Platelets: crossroads of immunity and hemostasis.
        Blood. 2014; 124: 671-672
        • Assinger A.
        Platelets and infection—an emerging role of platelets in viral infection.
        Front Immunol. 2014; 5: 649
        • Brown G.T.
        • Narayanan P.
        • Li W.
        • Silverstein R.L.
        • McIntyre T.M.
        Lipopolysaccharide stimulates platelets through an IL-1β autocrine loop.
        J Immunol. 2013; 191: 5196-5203
        • Gresele P.
        • Falcinelli E.
        • Sebastiano M.
        • Baldelli F.
        Endothelial and platelet function alterations in HIV-infected patients.
        Thromb Res. 2012; 129: 301-308
        • Marcantoni E.
        • Allen N.
        • Cambria M.R.
        • et al.
        Platelet transcriptome profiling in HIV and ATP-Binding Cassette Subfamily C Member 4 (ABCC4) as a mediator of platelet activity.
        JACC Basic Transl Sci. 2018; 3: 9-22
        • Loelius S.G.
        • Lannan K.L.
        • Blumberg N.
        • Phipps R.P.
        • Spinelli S.L.
        The HIV protease inhibitor, ritonavir, dysregulates human platelet function in vitro.
        Thromb Res. 2018; 169: 96-104
        • Tunjungputri R.N.
        • Van Der Ven A.J.
        • Schonsberg A.
        • et al.
        Reduced platelet hyperreactivity and platelet-monocyte aggregation in HIV-infected individuals receiving a raltegravir-based regimen.
        AIDS. 2014; 28: 2091-2096
        • van der Heijden W.A.
        • van Crevel R.
        • deGroot P.G.
        • et al.
        A switch to a raltegravir containing regimen does not lower platelet reactivity in HIV-infected individuals.
        AIDS. 2018; 32: 2469-2475
        • Wohl D.A.
        • Arnoczy G.
        • Fichtenbaum C.J.
        • et al.
        Comparison of cardiovascular disease risk markers in HIV-infected patients receiving abacavir and tenofovir: the nucleoside inflammation, coagulation and endothelial function (NICE) study.
        Antivir Ther. 2014; 19: 141-147
        • Stein J.H.
        • Currier J.S.
        • Hsue P.Y.
        Arterial disease in patients with human immunodeficiency virus infection: what has imaging taught us?.
        JACC Cardiovasc Imaging. 2014; 7: 515-525
        • Peyracchia M.
        • De Lio G.
        • Montrucchio C.
        • et al.
        Evaluation of coronary features of HIV patients presenting with ACS: the CUORE, a multicenter study.
        Atherosclerosis. 2018; 274: 218-226
        • Post W.S.
        • Budoff M.
        • Kingsley L.
        • et al.
        Associations between HIV infection and subclinical coronary atherosclerosis.
        Ann Int Med. 2014; 160: 458-467
        • Hulten E.
        • Mitchell J.
        • Scally J.
        • Gibbs B.
        • Villines T.C.
        HIV positivity, protease inhibitor exposure and subclinical atherosclerosis: a systematic review and meta-analysis of observational studies.
        Heart. 2009; 95: 1826-1835
        • Hsue P.Y.
        • Scherzer R.
        • Hunt P.W.
        • et al.
        Carotid intima-media thickness progression in HIV-infected adults occurs preferentially at the carotid bifurcation and is predicted by inflammation.
        J Am Heart Assoc. 2012; 1: e000422
        • Hanna D.B.
        • Moon J.Y.
        • Haberlen S.A.
        • et al.
        Carotid artery atherosclerosis is associated with mortality in HIV-positive women and men.
        AIDS. 2018; 32: 2393-2403
        • Hsu D.C.
        • Ma Y.F.
        • Hur S.
        • et al.
        Plasma IL-6 levels are independently associated with atherosclerosis and mortality in HIV-infected individuals on suppressive antiretroviral therapy.
        AIDS. 2016; 30: 2065-2074
        • Subramanian S.
        • Tawakol A.
        • Burdo T.H.
        • et al.
        Arterial inflammation in patients with HIV.
        JAMA. 2012; 308: 379-386
        • Tawakol A.
        • Ishai A.
        • Li D.
        • et al.
        Association of arterial and lymph node inflammation with distinct inflammatory pathways in human immunodeficiency virus infection.
        JAMA Cardiol. 2017; 2: 163-171
        • Torriani F.J.
        • Komarow L.
        • Parker R.A.
        • et al.
        Endothelial function in human immunodeficiency virus-infected antiretroviral-naive subjects before and after starting potent antiretroviral therapy: the ACTG (AIDS Clinical Trials Group) Study 5152s.
        J Am Coll Cardiol. 2008; 52: 569-576
        • Holloway C.J.
        • Ntusi N.
        • Suttie J.
        • et al.
        Comprehensive cardiac magnetic resonance imaging and spectroscopy reveal a high burden of myocardial disease in HIV patients.
        Circulation. 2013; 128: 814-822
        • Ntusi N.
        • O'Dwyer E.
        • Dorrell L.
        • et al.
        HIV-1-related cardiovascular disease is associated with chronic inflammation, frequent pericardial effusions, and probable myocardial edema.
        Circ Cardiovasc Imaging. 2016; 9e004430