Advertisement
Canadian Journal of Cardiology

Slower Skeletal Muscle Oxygenation Kinetics in Adults With Complex Congenital Heart Disease

      Abstract

      Background

      Adults with complex congenital heart disease (CHD) show reduced aerobic exercise capacity and impaired skeletal muscle function compared with healthy peers. Peripheral muscle factors are presumed to be important contributors to the aerobic capacity, but the mechanisms are poorly understood. The aim of the present study was to investigate differences between adults with CHD and controls in muscle oxygenation kinetics at rest, and during and after exercise.

      Methods

      Seventy-four patients with complex CHD (mean age 35.6 ± 14.3 years, female n = 22) were recruited. Seventy-four age- and sex-matched subjects were recruited as controls. Muscle oxygenation was successfully determined on the anterior portion of the deltoid muscle using near-infrared spectroscopy in 65 patients and 71 controls. Measurements were made at rest, during isotonic shoulder flexions (0-90°) to exhaustion, and during recovery.

      Results

      The patients with CHD performed fewer shoulder flexions (40 ± 17 vs 69 ± 40; P < 0.001), had lower muscle oxygen saturation (StO2) at rest (58 ± 18% vs 69 ± 18%; P < 0.001), slower desaturation rate at exercise onset (−9.7 ± 5.9 vs −15.1 ± 6.5% StO2 × 3.5 s−1, P <0.001), and slower resaturation rate post exercise (4.0 ± 2.7 vs 5.4 ± 3.6% StO2 × 3.5 s−1; P = 0.009) compared with the controls.

      Conclusions

      In comparison with age- and sex-matched controls, adults with complex CHD had slower oxygenation kinetics. This altered skeletal muscle metabolism might contribute to the impaired skeletal muscle endurance capacity shown and thereby also to the reduced aerobic capacity in this population.

      Résumé

      Contexte

      Comparés à leurs pairs en santé, les adultes présentant une cardiopathie congénitale complexe ont une capacité d’effort aérobie réduite et une fonction musculosquelettique amoindrie. Les facteurs périphériques musculaires sont considérés comme jouant un rôle important dans la capacité aérobie, mais les mécanismes de leur influence sont mal connus. Notre étude visait à examiner les différences entre des adultes présentant une cardiopathie congénitale et des sujets témoins sur le plan de la cinétique d’oxygénation des muscles au repos, durant l’effort et après l’effort.

      Méthodologie

      Soixante-quatorze patients présentant une cardiopathie congénitale complexe (âge moyen : 35,6 ± 14,3 ans, nombre de femmes : 22) ont été recrutés, et 74 autres participants d’âge et de sexe correspondants ont été admis comme sujets témoins. L’oxygénation des muscles a pu être mesurée par spectroscopie dans le proche infrarouge dans la portion antérieure du deltoïde chez 65 patients et 71 sujets témoins. Les mesures ont été faites au repos, durant une flexion de l’épaule (de 0 à 90°) en contraction isotonique maintenue jusqu’à l’épuisement, et durant la période de récupération.

      Résultats

      Les patients atteints de cardiopathie congénitale ont réussi à effectuer un moins grand nombre de flexions de l’épaule (40 ± 17 vs 69 ± 40; p < 0,001) et présentaient une saturation tissulaire musculaire en oxygène (StO2) inférieure au repos (58 ± 18 % vs 69 ± 18 %; p < 0,001), un taux de désaturation plus lent à l’effort (StO2 de -9,7 ± 5,9 vs -15,1 ± 6,5 % × 3,5 s−1, p < 0,001) et un taux de resaturation plus lent après l’effort (StO2 de 4,0 ± 2,7 vs 5,4 ± 3,6 % × 3,5 s−1; p = 0,009) comparativement aux sujets témoins.

      Conclusions

      Comparativement aux sujets témoins du même âge et du même sexe, les adultes atteints d’une cardiopathie congénitale complexe présentaient une cinétique d’oxygénation ralentie. Ce métabolisme altéré dans les muscles squelettiques pourrait contribuer à expliquer l’endurance musculaire réduite et donc la capacité aérobie amoindrie observée dans cette population.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kempny A.
        • Dimopoulos K.
        • Uebing A.
        • et al.
        Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life--single centre experience and review of published data.
        Eur Heart J. 2012; 33: 1386-1396
        • Greutmann M.
        • Le T.L.
        • Tobler D.
        • et al.
        Generalised muscle weakness in young adults with congenital heart disease.
        Heart. 2011; 97: 1164-1168
        • Kröönström L.A.
        • Johansson L.
        • Zetterström A.K.
        • et al.
        Muscle function in adults with congenital heart disease.
        Int J Cardiol. 2014; 170: 358-363
        • Sandberg C.
        • Thilén U.
        • Wadell K.
        • Johansson B.
        Adults with complex congenital heart disease have impaired skeletal muscle function and reduced confidence in performing exercise training.
        Eur J Prev Cardiol. 2015; 22: 1523-1530
        • Dimopoulos K.
        • Diller G.P.
        • Piepoli M.F.
        • Gatzoulis M.A.
        Exercise intolerance in adults with congenital heart disease.
        Cardiol Clin. 2006; 24 (vii): 641-660
        • Kenney W.L.
        • Wilmore J.H.
        • Costill D.L.
        Physiology of Sports and Exercise.
        6th ed. Human Kinetics, Champaign, IL2015
        • Brassard P.
        • Maltais F.
        • Noel M.
        • et al.
        Skeletal muscle endurance and muscle metabolism in patients with chronic heart failure.
        Can J Cardiol. 2006; 22: 387-392
        • Sunnerhagen K.S.
        • Cider Å.
        • Schaufelberger M.
        • Hedberg M.
        • Grimby G.
        Muscular performance in heart failure.
        J Card Fail. 1998; 4: 97-104
        • Poole D.C.
        • Hirai D.M.
        • Copp S.W.
        • Musch T.I.
        Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.
        Am J Physiol Heart Circ Physiol. 2012; 302: H1050-H1063
        • Hirai D.M.
        • Musch T.I.
        • Poole D.C.
        Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization.
        Am J Physiol Heart Circ Physiol. 2015; 309: H1419-H1439
        • Spee R.F.
        • Niemeijer V.M.
        • Schoots T.
        • et al.
        The relation between cardiac output kinetics and skeletal muscle oxygenation during moderate exercise in moderately impaired patients with chronic heart failure.
        J Appl Physiology (1985). 2016; 121: 198-204
        • Ohuchi H.
        • Hamamichi Y.
        • Hayashi T.
        • et al.
        Post-exercise heart rate, blood pressure and oxygen uptake dynamics in pediatric patients with Fontan circulation. Comparison with patients after right ventricular outflow tract reconstruction.
        Int J Cardiol. 2005; 101: 129-136
        • Tanabe Y.
        • Takahashi M.
        • Hosaka Y.
        • et al.
        Prolonged recovery of cardiac output after maximal exercise in patients with chronic heart failure.
        J Am Coll Cardiol. 2000; 35: 1228-1236
        • Greutmann M.
        • Rozenberg D.
        • Le T.L.
        • Silversides C.K.
        • Granton J.T.
        Recovery of respiratory gas exchange after exercise in adults with congenital heart disease.
        Int J Cardiol. 2014; 176: 333-339
        • Matsui S.
        • Tamura N.
        • Hirakawa T.
        • et al.
        Assessment of working skeletal muscle oxygenation in patients with chronic heart failure.
        Am Heart J. 1995; 129: 690-695
        • Vasan R.S.
        • Xanthakis V.
        • Lyass A.
        • et al.
        Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham study: an echocardiographic study over 3 decades.
        JACC Cardiovasc Imaging. 2018; 11: 1-11
        • Dimopoulus K.
        • Alonso-Gonzalez R.
        • Thaulow E.
        Heart failure, exercise intolerance and physical training.
        in: Gatzoulis M.A. Webb G.D. Daubeney P.E.F. Diagnosis and Management of Adult Congenital Heart Disease. 2nd ed. Elsevier Saunders Ltd, Philadelphia, PA2011: 44-51
        • Ferrari M.
        • Mottola L.
        • Quaresima V.
        Principles, techniques, and limitations of near infrared spectroscopy.
        Can J Appl Physiol. 2004; 29: 463-487
        • Belardinelli R.
        • Barstow T.J.
        • Porszasz J.
        • Wasserman K.
        Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy.
        Eur J Appl Physiol Occup Physiol. 1995; 70: 487-492
        • Danduran M.J.
        • Dixon J.E.
        • Rao R.P.
        Near infrared spectroscopy describes physiologic payback associated with excess postexercise oxygen consumption in healthy controls and children with complex congenital heart disease.
        Pediatr Cardiol. 2012; 33: 95-102
        • Moalla W.
        • Dupont G.
        • Costes F.
        • et al.
        Performance and muscle oxygenation during isometric exercise and recovery in children with congenital heart diseases.
        Int J Sports Med. 2006; 27: 864-869
        • Southern W.M.
        • Ryan T.E.
        • Kepple K.
        • et al.
        Reduced skeletal muscle oxidative capacity and impaired training adaptations in heart failure.
        Physiol Rep. 2015; 3: e12353
        • Niemeijer V.M.
        • Spee R.F.
        • Schoots T.
        • Wijn P.F.
        • Kemps H.M.
        Limitations of skeletal muscle oxygen delivery and utilization during moderate-intensity exercise in moderately impaired patients with chronic heart failure.
        Am J Physiol Heart Circ Physiol. 2016; 311: H1530-H1539
        • Neu C.M.
        • Rauch F.
        • Rittweger J.
        • Manz F.
        • Schoenau E.
        Influence of puberty on muscle development at the forearm.
        Am J Physiol Endocrinol Metab. 2002; 283: E103-E107
        • Erikssen G.
        • Liestøl K.
        • Seem E.
        • et al.
        Achievements in congenital heart defect surgery: a prospective, 40-year study of 7038 patients.
        Circulation. 2015; 131: 337-346
        • van Beekvelt M.C.
        • Borghuis M.S.
        • van Engelen B.G.
        • Wevers R.A.
        • Colier W.N.
        Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle.
        Clin Sci (Lond). 2001; 101: 21-28
        • Cider Å.
        • Carlsson S.
        • Arvidsson C.
        • Andersson B.
        • Sunnerhagen K.S.
        Reliability of clinical muscular endurance tests in patients with chronic heart failure.
        Eur J Cardiovasc Nurs. 2006; 5: 122-126
        • Myers D.E.
        • Anderson L.D.
        • Seifert R.P.
        • et al.
        Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy.
        J Biomedical Opt. 2005; 10: 034017
      1. International Physical Activity Questionnaire.
        (Available at:)
        https://sites.google.com/site/theipaq
        Date accessed: December 12, 2018
        • Niemeijer V.M.
        • Jansen J.P.
        • van Dijk T.
        • et al.
        The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: the extent of the problem.
        Physiol Meas. 2017; 38: 539-554
        • Amann M.
        • Romer L.M.
        • Pegelow D.F.
        • et al.
        Effects of arterial oxygen content on peripheral locomotor muscle fatigue.
        J Appl Physiol (1985). 2006; 101: 119-127
        • Navaratnam D.
        • Fitzsimmons S.
        • Grocott M.
        • et al.
        Exercise-induced systemic venous hypertension in the Fontan circulation.
        Am J Cardiol. 2016; 117: 1667-1671
        • Bauer T.A.
        • Brass E.P.
        • Hiatt W.R.
        Impaired muscle oxygen use at onset of exercise in peripheral arterial disease.
        J Vasc Surg. 2004; 40: 488-493
        • Gewillig M.
        • Brown S.C.
        The Fontan circulation after 45 years: update in physiology.
        Heart. 2016; 102: 1081-1086
        • Kitzman D.W.
        • Nicklas B.
        • Kraus W.E.
        • et al.
        Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction.
        Am J Physiol Heart Circ Physiol. 2014; 306: H1364-H1370
        • Chance B.
        • Dait M.T.
        • Zhang C.
        • Hamaoka T.
        • Hagerman F.
        Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers.
        Am J Physiol. 1992; 262: C766-C775
        • Behnke B.J.
        • Delp M.D.
        • Poole D.C.
        • Musch T.I.
        Aging potentiates the effect of congestive heart failure on muscle microvascular oxygenation.
        J Appl Physiol (1985). 2007; 103: 1757-1763
        • Stone N.
        • Obeid J.
        • Dillenburg R.
        • et al.
        Objectively measured physical activity levels of young children with congenital heart disease.
        Cardiol Young. 2015; 25: 520-525
        • Sandberg C.
        • Pomeroy J.
        • Thilén U.
        • et al.
        Habitual physical activity in adults with congenital heart disease compared with age- and sex-matched controls.
        Can J Cardiol. 2016; 32: 547-553