Advertisement
Canadian Journal of Cardiology

The Current Role of Viability Imaging to Guide Revascularization and Therapy Decisions in Patients With Heart Failure and Reduced Left Ventricular Function

      Abstract

      This review describes the current evidence and controversies for viability imaging to direct revascularization decisions and the impact on patient outcomes. Balancing procedural risks and possible benefit from revascularization is a key question in patients with heart failure of ischemic origin (IHF). Different stages of ischemia induce adaptive changes in myocardial metabolism and function. Viable but dysfunctional myocardium has the potential to recover after restoring blood flow. Modern imaging techniques demonstrate different aspects of viable myocardium; perfusion (single-photon emission computed tomography [SPECT], positron emission tomography [PET], cardiovascular magnetic resonance [CMR]), cell metabolism (PET), cell membrane integrity and mitochondrial function (201Tl and 99mTc-based SPECT), contractile reserve (stress echocardiography, CMR) and scar (CMR). Observational studies suggest that patients with IHF and significant viable myocardium may benefit from revascularization compared with medical treatment alone but that in patients without significant viability, revascularization appears to offer no survival benefit or could even worsen the outcome. This was not supported by 2 randomized trials (Surgical Treatment for Ischemic Heart Failure [STICH] and PET and Recovery Following Revascularization [PARR] -2) although post-hoc analyses suggest that benefit can be achieved if decisions had been strictly based on viability imaging recommendations. Based on current evidence, viability testing should not be the routine for all patients with IHF considered for revascularization but rather integrated with clinical data to guide decisions on revascularization of high-risk patients with comorbidities.

      Résumé

      Cet article décrit les données à l’appui de l’imagerie de viabilité en tant qu’outil pour orienter les décisions en matière de revascularisation, les controverses qu’elle suscite et ses répercussions sur les résultats pour les patients. Trouver l’équilibre entre les risques liés à l’intervention et le bienfait possible de la revascularisation est un enjeu fondamental chez les patients présentant une insuffisance cardiaque d’origine ischémique. Les différents stades de l’ischémie entraînent des changements adaptatifs dans le métabolisme et le fonctionnement du myocarde. Un myocarde dysfonctionnel mais viable est capable de se rétablir dès lors que le débit sanguin est rétabli. Les techniques d’imagerie moderne permettent d’observer les différents éléments d’un myocarde viable : perfusion (tomographie d'émission monophotonique [TEM], tomographie par émission de positons [TEP], résonance magnétique cardiovasculaire [RMC]), métabolisme cellulaire (TEP), intégrité des membranes cellulaires et fonction mitochondriale (TEM après injection de 201Tl et de 99mTc), réserve contractile (échocardiographie à l’effort, RMC) et tissu cicatriciel (RMC). Les études observationnelles indiquent que les patients atteints d’une insuffisance cardiaque d’origine ischémique dont la viabilité myocardique est importante pourraient tirer des bienfaits de la revascularisation, au lieu de recevoir seulement un traitement pharmacologique, mais que chez les patients dont la viabilité myocardique est moindre, la revascularisation ne semble offrir aucun bienfait sur le plan de la survie et pourrait même aggraver le pronostic. Ce constat n’a pas été confirmé dans deux études à répartition aléatoire (études STICH [Surgical Treatment for Ischemic Heart Failure] et PARR [PET and Recovery Following Revascularization] -2), bien que les analyses post-hoc indiquent qu’un bienfait peut être obtenu si les décisions reposent uniquement sur les recommandations relatives à l’imagerie de viabilité. D’après les données probantes actuelles, les épreuves de viabilité ne doivent pas être systématiques chez tous les patients atteints d’une insuffisance cardiaque d’origine ischémique chez qui la revascularisation est envisagée. Leurs résultats doivent plutôt être intégrés aux données cliniques pour orienter les décisions concernant la revascularisation chez les patients à risque élevé présentant des comorbidités.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tu J.V.
        • Khan A.M.
        • Ng K.
        • Chu A.
        Recent temporal changes in atherosclerotic cardiovascular diseases in Ontario: clinical and health systems impact.
        Can J Cardiol. 2017; 33: 378-384
        • Bax J.J.
        • Poldermans D.
        • Elhendy A.
        • Cornel J.H.
        • et al.
        Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography.
        J Am Coll Cardiol. 1999; 34: 163-169
        • Schinkel A.F.L.
        • Bax J.J.
        • Poldermans D.
        • Elhendy A.
        • Ferrari R.
        • Rahimtoola S.H.
        Hibernating myocardium: diagnosis and patient outcomes.
        Curr Probl Cardiol. 2007; 32: 375-410
        • Beanlands R.S.B.
        • Nichol G.
        • Huszti E.
        • et al.
        F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease.
        J Am Coll Cardiol. 2007; 50: 2002-2012
        • D'Egidio G.
        • Nichol G.
        • Williams K.A.
        • et al.
        Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial.
        JACC Cardiovasc Imaging. 2009; 2: 1060-1068
        • Canty J.M.
        • Fallavollita J.A.
        Hibernating myocardium.
        J Nucl Cardiol. 2005; 12: 104-119
        • Page B.J.
        • Banas M.D.
        • Suzuki G.
        • et al.
        Revascularization of chronic hibernating myocardium stimulates myocyte proliferation and partially reverses chronic adaptations to ischemia.
        J Am Coll Cardiol. 2015; 65: 684-697
        • Bayeva M.
        • Sawicki K.T.
        • Butler J.
        • Gheorghiade M.
        • Ardehali H.
        Molecular and cellular basis of viable dysfunctional myocardium.
        Circ Heart Fail. 2014; 7: 680-691
        • Kalra D.K.
        • Zhu X.
        • Ramchandani M.K.
        • et al.
        Increased myocardial gene expression of tumor necrosis factor-alpha and nitric oxide synthase-2: a potential mechanism for depressed myocardial function in hibernating myocardium in humans.
        Circulation. 2002; 105: 1537-1540
        • Camici P.G.
        • Dutka D.P.
        Repetitive stunning, hibernation, and heart failure: contribution of PET to establishing a link.
        Am J Physiol Heart Circ Physiol. 2001; 280: H929-H936
        • Thijssen V.L.J.L.
        Temporal and spatial variations in structural protein expression during the progression from stunned to hibernating myocardium.
        Circulation. 2004; 110: 3313-3321
        • St Louis J.D.
        • Hughes G.C.
        • Kypson A.P.
        • et al.
        An experimental model of chronic myocardial hibernation.
        Ann Thorac Surg. 2000; 69: 1351-1357
        • Wijns W.
        • Vatner S.F.
        • Camici P.G.
        Hibernating myocardium.
        N Engl J Med. 1998; 339: 173-181
        • Frangogiannis N.G.
        • Shimoni S.
        • Chang S.
        • et al.
        Active interstitial remodeling: an important process in the hibernating human myocardium.
        J Am Coll Cardiol. 2002; 39: 1468-1474
        • Vanoverschelde J.L.
        • Wijns W.
        • Borgers M.
        • et al.
        Chronic myocardial hibernation in humans: from bedside to bench.
        Circulation. 1997; 95: 1961-1971
        • Mc Ardle B.
        • Shukla T.
        • Nichol G.
        • et al.
        Long-term follow-up of outcomes with F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction secondary to coronary disease.
        Circ Cardiovasc Imaging. 2016; 9e004331
        • Gerber B.L.
        • Rousseau M.F.
        • Ahn S.A.
        • et al.
        Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction.
        J Am Coll Cardiol. 2012; 59: 825-835
        • Allman K.C.
        • Shaw L.J.
        • Hachamovitch R.
        • Udelson J.E.
        Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis.
        J Am Coll Cardiol. 2002; 39: 1151-1158
        • Orlandini A.
        • Castellana N.
        • Pascual A.
        • et al.
        Myocardial viability for decision-making concerning revascularization in patients with left ventricular dysfunction and coronary artery disease: a meta-analysis of non-randomized and randomized studies.
        Int J Cardiol. 2015; 182: 494-499
        • Romero J.
        • Xue X.
        • Gonzalez W.
        • Garcia M.J.
        CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials.
        JACC Cardiovasc Imaging. 2012; 5: 494-508
        • Cleland J.G.F.
        • Calvert M.
        • Freemantle N.
        • et al.
        The Heart Failure Revascularisation Trial (HEART).
        Eur J Heart Fail. 2014; 13: 227-233
        • Velazquez E.J.
        • Lee K.L.
        • Deja M.A.
        • et al.
        Coronary-artery bypass surgery in patients with left ventricular dysfunction.
        N Engl J Med. 2011; 364: 1607-1616
        • Siebelink H.M.
        • Blanksma P.K.
        • Crijns H.J.
        • et al.
        No difference in cardiac event-free survival between positron emission tomography-guided and single-photon emission computed tomography-guided patient management: a prospective, randomized comparison of patients with suspicion of jeopardized myocardium.
        J Am Coll Cardiol. 2001; 37: 81-88
        • Ling L.F.
        • Marwick T.H.
        • Flores D.R.
        • et al.
        Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: inducible ischemia versus hibernating myocardium.
        Circ Cardiovasc Imaging. 2013; 6: 363-372
        • Di Carli M.F.
        • Asgarzadie F.
        • Schelbert H.R.
        • et al.
        Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy.
        Circulation. 1995; 92: 3436-3444
        • Rizzello V.
        • Poldermans D.
        • Schinkel A.F.L.
        • et al.
        Long term prognostic value of myocardial viability and ischaemia during dobutamine stress echocardiography in patients with ischaemic cardiomyopathy undergoing coronary revascularisation.
        Heart. 2006; 92: 239-244
        • Marwick T.H.
        • Zuchowski C.
        • Lauer M.S.
        • Secknus M.A.
        • Williams J.
        • Lytle B.W.
        Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability.
        J Am Coll Cardiol. 1999; 33: 750-758
        • Abraham A.
        • Nichol G.
        • Williams K.A.
        • et al.
        18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial.
        J Nucl Med. 2010; 51: 567-574
        • Velazquez E.J.
        • Lee K.L.
        • Jones R.H.
        • et al.
        Coronary-artery bypass surgery in patients with ischemic cardiomyopathy.
        N Engl J Med. 2016; 374: 1511-1520
        • Appoo J.
        • Norris C.
        • Merali S.
        • et al.
        Long-term outcome of isolated coronary artery bypass surgery in patients with severe left ventricular dysfunction.
        Circulation. 2004; 110: 13-17
        • Beanlands R.S.B.
        • Ruddy T.D.
        • Dekemp R.A.
        • et al.
        Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function.
        J Am Coll Cardiol. 2002; 40: 1735-1743
        • Shukla T.
        • Nichol G.
        • Wells G.
        • et al.
        Does FDG PET-assisted management of patients with left ventricular dysfunction improve quality of life? A substudy of the PARR-2 trial.
        Can J Cardiol. 2012; 28: 54-61
        • Liu Y.
        • Jiang Y.
        • Yang X.
        • et al.
        Limited prognostic value of myocardial viability assessment in patients with coronary artery diseases and severe left ventricular dysfunction.
        J Thorac Dis. 2018; 10: 2249-2255
        • Bonow R.O.
        • Maurer G.
        • Lee K.L.
        • et al.
        Myocardial viability and survival in ischemic left ventricular dysfunction.
        N Engl J Med. 2011; 364: 1617-1625
        • Nihoyannopoulos P.
        • Vanoverschelde J.-L.
        Myocardial ischaemia and viability: the pivotal role of echocardiography.
        Eur Heart J. 2011; 32: 810-819
        • Afridi I.
        • Kleiman N.S.
        • Raizner A.E.
        • Zoghbi W.A.
        Dobutamine echocardiography in myocardial hibernation: optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty.
        Circulation. 1995; 91: 663-670
        • Geleijnse M.L.
        • Fioretti P.M.
        • Roelandt J.R.
        Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography.
        J Am Coll Cardiol. 1997; 30: 595-606
        • Roes S.D.
        • Mollema S.A.
        • Lamb H.J.
        • van der Wall E.E.
        • de Roos A.
        • Bax J.J.
        Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic resonance imaging.
        Am J Cardiol. 2009; 104: 312-317
        • Abdelgawwad I.M.
        • Hawary Al A.A.
        • Kamal H.M.
        • Maghawry Al L.M.
        Prediction of left ventricular contractile recovery using tissue Doppler strain and strain rate measurements at rest in patients undergoing percutaneous coronary intervention.
        Int J Cardiovasc Imaging. 2017; 33: 643-651
        • Underwood S.
        Imaging techniques for the assessment of myocardial hibernation report of a study group of the European Society of Cardiology.
        Eur Heart J. 2004; 25: 815-836
        • Henzlova M.J.
        • Duvall W.L.
        • Einstein A.J.
        • Travin M.I.
        • Verberne H.J.
        ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers.
        J Nucl Cardiol. 2016; 23: 606-639
        • Bengel F.M.
        • Higuchi T.
        • Javadi M.S.
        • Lautamäki R.
        Cardiac positron emission tomography.
        J Am Coll Cardiol. 2009; 54: 1-15
        • Krivokapich J.
        • Smith G.T.
        • Huang S.C.
        • et al.
        13N ammonia myocardial imaging at rest and with exercise in normal volunteers: quantification of absolute myocardial perfusion with dynamic positron emission tomography.
        Circulation. 1989; 80: 1328-1337
        • Murthy V.L.
        • Bateman T.M.
        • Beanlands R.S.
        • et al.
        Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI Cardiovascular Council and the ASNC.
        J Nucl Cardiol. 2018; 25: 269-297
        • Vitale G.D.
        • deKemp R.A.
        • Ruddy T.D.
        • Williams K.
        • Beanlands R.S.
        Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction.
        J Nucl Med. 2001; 42: 1730-1736
        • Wiefels C.
        • Erthal F.
        • Dekemp R.A.
        • et al.
        Radionuclide imaging in decision-making for coronary revascularization in stable ischemic heart disease.
        Curr Cardiovasc Imaging Rep. 2018; 23: 1-17
        • Bree D.
        • Wollmuth J.R.
        • Cupps B.P.
        • et al.
        Low-dose dobutamine tissue-tagged magnetic resonance imaging with 3-dimensional strain analysis allows assessment of myocardial viability in patients with ischemic cardiomyopathy.
        Circulation. 2006; 114 (I-33-36)
        • Shah D.J.
        • Kim H.W.
        • James O.
        • et al.
        Prevalence of regional myocardial thinning and relationship with myocardial scarring in patients with coronary artery disease.
        JAMA. 2013; 309: 909-918
        • Dastidar A.G.
        • Harries I.
        • Pontecorboli G.
        • et al.
        Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique.
        Int J Cardiovasc Imaging. 2018; 5 (494-11)
        • Jacklin P.B.
        • Barrington S.F.
        • Roxburgh J.C.
        • et al.
        Cost-effectiveness of preoperative positron emission tomography in ischemic heart disease.
        Ann Thorac Surg. 2002; 73: 1403-1409
        • McArdle B.A.
        • Beanlands R.S.B.
        Myocardial viability: whom, what, why, which, and how?.
        Can J Cardiol. 2013; 29: 399-402
        • Erthal F.
        • Wiefels C.
        • Promislow S.
        • et al.
        Myocardial viability: from PARR-2 to IMAGE HF: current evidence and future directions.
        Int J Cardiovasc Sci. 2019; 32: 70-83
        • Ker W.D.S.
        • Nunes T.H.P.
        • Nacif M.S.
        • Mesquita C.T.
        Practical implications of myocardial viability studies.
        Arq Bras Cardiol. 2018; 110: 278-288
        • Obadia J.-F.
        • Messika-Zeitoun D.
        • Leurent G.
        • et al.
        Percutaneous repair or medical treatment for secondary mitral regurgitation.
        N Engl J Med. 2018; 379: 2297-2306
        • Stone G.W.
        • Lindenfeld J.
        • Abraham W.T.
        • et al.
        Transcatheter mitral-valve repair in patients with heart failure.
        N Engl J Med. 2018; 379: 2307-2318
        • Wolff G.
        • Dimitroulis D.
        • Andreotti F.
        • et al.
        Survival benefits of invasive versus conservative strategies in heart failure in patients with reduced ejection fraction and coronary artery disease: a meta-analysis.
        Circ Heart Fail. 2017; 10: 151
        • Bax J.J.
        • Di Carli M.
        • Narula J.
        • Delgado V.
        Multimodality imaging in ischaemic heart failure.
        Lancet. 2019; 393: 1056-1070
        • Ezekowitz J.A.
        • O'Meara E.
        • McDonald M.A.
        • et al.
        2017 comprehensive update of the Canadian Cardiovascular Society guidelines for the management of heart failure.
        Can J Cardiol. 2017; 33: 1342-1433
        • Yamaguchi A.
        • Ino T.
        • Adachi H.
        • et al.
        Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy.
        Ann Thorac Surg. 1998; 65: 434-438
        • Kramer D.G.
        • Trikalinos T.A.
        • Kent D.M.
        • Antonopoulos G.V.
        • Konstam M.A.
        • Udelson J.E.
        Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach.
        J Am Coll Cardiol. 2010; 56: 392-406
        • Bonow R.O.
        • Castelvecchio S.
        • Panza J.A.
        • et al.
        Severity of remodeling, myocardial viability, and survival in ischemic LV dysfunction after surgical revascularization.
        JACC Cardiovasc Imaging. 2015; 8: 1121-1129
        • Bax J.J.
        • Schinkel A.F.L.
        • Boersma E.
        • et al.
        Extensive left ventricular remodeling does not allow viable myocardium to improve in left ventricular ejection fraction after revascularization and is associated with worse long-term prognosis.
        Circulation. 2004; 110: 18-22
        • Velazquez E.J.
        • Bonow R.O.
        Revascularization in severe left ventricular dysfunction.
        J Am Coll Cardiol. 2015; 65: 615-624
        • Bax J.J.
        • Delgado V.
        Editorial: Chronic total occlusion without collateral blood flow does not exclude myocardial viability and subsequent recovery after revascularization.
        J Nucl Cardiol. 2018; 25: 1-3
        • Wang L.
        • Lu M.-J.
        • Feng L.
        • et al.
        Relationship of myocardial hibernation, scar, and angiographic collateral flow in ischemic cardiomyopathy with coronary chronic total occlusion.
        J Nucl Cardiol. 2018; 59 (991-11)
        • Patel H.
        • Mazur W.
        • Williams K.A.
        • Kalra D.K.
        Myocardial viability–state of the art: is it still relevant and how to best assess it with imaging?.
        Trends Cardiovasc Med. 2018; 28: 24-37
        • Mielniczuk L.M.
        • Toth G.G.
        • Xie J.X.
        • De Bruyne B.
        • Shaw L.J.
        • Beanlands R.S.
        Can functional testing for ischemia and viability guide revascularization?.
        JACC Cardiovasc Imaging. 2017; 10: 354-364
        • Neumann F.-J.
        • Sousa-Uva M.
        • Ahlsson A.
        • et al.
        2018 ESC/EACTS guidelines on myocardial revascularization.
        Eur Heart J. 2018; 34: 2949-2996
        • Nihoyannaopoulos C.
        • Vanoverschelde J.L.
        Myocardial ischemia and viability: the pivotal role of echocardiogarphy.
        Eur Heart J. 2011; 32: 810-819
        • Panza J.A.
        • Holly T.A.
        • Asch F.M.
        • She L.
        • Pellikka P.A.
        • Velazquez E.J.
        • et al.
        Inducible myocardial ischemia and outcomes in patients with coronary artery disease and left ventricular dysfunction.
        J Am Coll Cardiol. 2013; 61: 1860-1870
        • Boiten H.J.
        • van den Berge J.C.
        • Valkema R.
        • van Domburg R.T.
        • Zijlstra F.
        • Schinkel A.F.L.
        Ischemia burden on stress SPECT MPI predicts long-term outcomes after revascularization in stable coronary artery disease.
        J Nucl Cardiol. 2018; 25: 958-966
        • Hachamovitch R.
        • Rozanski A.
        • Shaw L.J.
        • et al.
        Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy.
        Eur Heart J. 2011; 32: 1012-1024
        • Kunadian V.
        • Zaman A.
        • Qiu W.
        Revascularization among patients with severe left ventricular dysfunction: a meta-analysis of observational studies.
        Eur J Heart Fail. 2011; 13: 773-784
        • Samady H.
        • Elefteriades J.A.
        • Abbott B.G.
        • Mattera J.A.
        • McPherson C.A.
        • Wackers F.J.
        Failure to improve left ventricular function after coronary revascularization for ischemic cardiomyopathy is not associated with worse outcome.
        Circulation. 1999; 100: 1298-1304
        • Veenhuyzen G.D.
        • Singh S.N.
        • McAreavey D.
        • Shelton B.J.
        • Exner D.V.
        Prior coronary artery bypass surgery and risk of death among patients with ischemic left ventricular dysfunction.
        Circulation. 2001; 104: 1489-1493
        • Canty J.M.
        • Suzuki G.
        • Banas M.D.
        • Verheyen F.
        • Borgers M.
        • Fallavollita J.A.
        Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death.
        Circ Res. 2004; 94: 1142-1149
        • Narula J.
        • Gerson M.
        • Thomas G.S.
        • Cerqueira M.D.
        • Jacobson A.F.
        123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure: the ADMIRE-HFX study.
        J Nucl Med. 2015; 56: 1011-1018
        • Fallavollita J.A.
        • Heavey B.M.
        • Luisi A.J.
        • et al.
        Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy.
        J Am Coll Cardiol. 2014; 63: 141-149
        • Hussein A.A.
        • Niekoop M.
        • Dilsizian V.
        • et al.
        Hibernating substrate of ventricular tachycardia: a three-dimensional metabolic and electro-anatomic assessment.
        J Interv Card Electrophysiol. 2017; 48: 247-254
        • Yancy C.W.
        • Jessup M.
        • Bozkurt B.
        • et al.
        2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
        Circulation. 2013; 128: e240-e327
        • Ponikowski P.
        • Voors A.A.
        • Anker S.D.
        • et al.
        2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.
        Eur J Heart Fail. 2016; 18: 891-975
        • Hachamovitch R.
        • Hayes S.W.
        • Friedman J.D.
        • Cohen I.
        • Berman D.S.
        Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography.
        Circulation. 2003; 107: 2900-2907
        • Kloosterman M.
        • Damman K.
        • van Veldhuisen D.J.
        • Rienstra M.
        • Maass A.H.
        The importance of myocardial contractile reserve in predicting response to cardiac resynchronization therapy.
        Eur J Heart Fail. 2017; 19: 862-869
        • Birnie D.
        • DeKemp R.A.
        • Ruddy T.D.
        • et al.
        Effect of lateral wall scar on reverse remodeling with cardiac resynchronization therapy.
        Heart Rhythm. 2009; 6: 1721-1726
        • White J.A.
        • Fine N.
        • Gula L.J.
        • et al.
        Fused whole-heart coronary and myocardial scar imaging using 3-T CMR. Implications for planning of cardiac resynchronization therapy and coronary revascularization.
        JACC Cardiovasc Imaging. 2010; 3: 921-930
        • Laksman Z.
        • Yee R.
        • Stirrat J.
        • et al.
        Model-based navigation of left and right ventricular leads to optimal targets for cardiac resynchronization therapy: a single-center feasibility study.
        Circ Arrhyth Electrophysiol. 2014; 7: 1040-1047
        • Birnie D.
        • de Kemp R.A.
        • Tang A.S.
        • et al.
        Reduced septal glucose metabolism predicts response to cardiac resynchronization therapy.
        J Nucl Cardiol. 2011; 19: 73-83
        • Christakopoulos G.E.
        • Christopoulos G.
        • Carlino M.
        • et al.
        Meta-analysis of clinical outcomes of patients who underwent percutaneous coronary interventions for chronic total occlusions.
        Am J Cardiol. 2015; 115: 1367-1375
        • Gao L.
        • Wang Y.
        • Liu Y.
        • Cao F.
        • Chen Y.
        Long-term clinical outcomes of successful revascularization with drug-eluting stents for chronic total occlusions: a systematic review and meta-analysis.
        Cath Cardiovasc Interv. 2017; 89: 574-581
        • Werner G.S.
        • Martin-Yuste V.
        • Hildick-Smith D.
        • et al.
        A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions.
        Eur Heart J. 2018; 36: 2484-2493
        • Henriques J.P.S.
        • Hoebers L.P.
        • Råmunddal T.
        • et al.
        Percutaneous intervention for concurrent chronic total occlusions in patients with STEMI: the EXPLORE trial.
        J Am Coll Cardiol. 2016; 68: 1622-1632
        • Mashayekhi K.
        • Nührenberg T.G.
        • Toma A.
        • et al.
        A randomized trial to assess regional left ventricular function after stent implantation in chronic total occlusion: the REVASC Trial.
        JACC Cardiovasc Interv. 2018; 11: 1982-1991
        • Beanlands R.S.
        • Labinaz M.
        • Ruddy T.D.
        • et al.
        Establishing an approach for patients with recent coronary occlusion: identification of viable myocardium.
        J Nucl Cardiol. 1999; 6: 298-305
        • Dong W.
        • Li J.
        • Mi H.
        • Song X.
        • Jiao J.
        • Li Q.
        Relationship between collateral circulation and myocardial viability of 18F-FDG PET/CT subtended by chronic total occluded coronary arteries.
        Ann Nucl Med. 2018; 32: 197-205
        • Stuijfzand W.J.
        • Biesbroek P.S.
        • Raijmakers P.G.
        • et al.
        Effects of successful percutaneous coronary intervention of chronic total occlusions on myocardial perfusion and left ventricular function.
        EuroIntervention. 2017; 13: 345-354
        • Pica S.
        • Di Giovine G.
        • Bollati M.
        • et al.
        Cardiac magnetic resonance for ischaemia and viability detection: guiding patient selection to revascularization in coronary chronic total occlusions: the CARISMA-CTO study design.
        Int J Cardiol. 2018; 272: 356-362
        • de Boer R.A.
        • Daniels L.B.
        • Maisel A.S.
        • Januzzi J.L.
        State of the art: newer biomarkers in heart failure.
        Eur J Heart Fail. 2015; 17: 559-569
        • Zelt J.G.E.
        • Liu P.P.
        • Erthal F.
        • et al.
        N-terminal pro b-type natriuretic peptide and high-sensitivity cardiac troponin T levels are related to the extent of hibernating myocardium in patients with ischemic heart failure.
        Can J Cardiol. 2017; 33: 1478-1488
        • Strauss B.H.
        • Roifman I.
        Biomarker screening for viable myocardium in ischemic cardiomyopathy: interesting… if viability is important.
        Can J Cardiol. 2017; 33: 1457-1458
        • Aktas M.K.
        • Allen D.
        • Jaber W.A.
        • Chuang H.-H.
        • Taylor D.O.
        • Yamani M.H.
        Relation of brain natriuretic peptide level to extent of left ventricular scarring in patients with chronic heart failure secondary to ischemic cardiomyopathy.
        Am J Cardiol. 2009; 103: 243-245
        • Henkel D.M.
        • Glockner J.
        • Miller W.L.
        Association of myocardial fibrosis, B-type natriuretic peptide, and cardiac magnetic resonance parameters of remodeling in chronic ischemic cardiomyopathy.
        Am J Cardiol. 2012; 109: 390-394
        • Perera D.
        • Clayton T.
        • Petrie M.C.
        • et al.
        Percutaneous revascularization for ischemic ventricular dysfunction: rationale and design of the REVIVED-BCIS2 trial: percutaneous coronary intervention for ischemic cardiomyopathy.
        JACC Heart Fail. 2018; 6: 517-526
        • Mesana T.
        • Rodger N.
        • Sherrard H.
        Heart teams: a new paradigm in health care.
        Can J Cardiol. 2018; 34: 815-818
        • Juneau D.
        • Chow B.J.
        • Beanlands R.
        • Crean A.
        Heart teams for cardiac imaging: the right test at the right time for the right patient.
        in: Mesana T. Heart Teams for Treatment of Cardiovascular Disease: A Guide for Advancing Patient-Centered Cardiac Care. Springer Science and Media, Berlin, Germany2019
        • Al'Aref S.J.
        • Anchouche K.
        • Singh G.
        • et al.
        Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging.
        Eur Heart J. 2018; 359: 1675