Advertisement
Canadian Journal of Cardiology

Chronic Kidney Disease and the Pathophysiology of Valvular Heart Disease

  • Julien Ternacle
    Affiliations
    Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart and Lung Institute, Université Laval, Québec city, Québec, Canada

    Cardiology department, Expert Valve Center, Henri Mondor hospital, Créteil, France

    INSERM unit U955, Team 8, Paris-Est Créteil University, Val-de-Marne, Créteil, France
    Search for articles by this author
  • Nancy Côté
    Affiliations
    Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart and Lung Institute, Université Laval, Québec city, Québec, Canada
    Search for articles by this author
  • Laura Krapf
    Affiliations
    Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart and Lung Institute, Université Laval, Québec city, Québec, Canada

    Cardiology department, Centre d’Accueil et de Soins Hospitaliers (CASH) – Hôpital Max Fourestier, Nanterre, France
    Search for articles by this author
  • Annabelle Nguyen
    Affiliations
    Cardiology department, Expert Valve Center, Henri Mondor hospital, Créteil, France

    INSERM unit U955, Team 8, Paris-Est Créteil University, Val-de-Marne, Créteil, France
    Search for articles by this author
  • Marie-Annick Clavel
    Affiliations
    Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart and Lung Institute, Université Laval, Québec city, Québec, Canada
    Search for articles by this author
  • Philippe Pibarot
    Correspondence
    Corresponding author: Dr Philippe Pibarot, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec G1V 4G5, Canada. Tel.: +1-418-656-8711 ×5938; fax: +1-418-656-4715.
    Affiliations
    Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart and Lung Institute, Université Laval, Québec city, Québec, Canada
    Search for articles by this author

      Abstract

      Valvular heart calcification is common in patients with chronic kidney disease (CKD), especially in those receiving hemodialysis therapy, and it is associated with poor prognosis. Furthermore, progression of valvular heart disease (VHD) and structural valve deterioration of bioprosthetic valves are faster in these patients. Mechanisms involved in the pathophysiology of VHD are similar between patients with and without impaired kidney function, but CKD is associated with a bone metabolism dysregulation, which might lead to a procalcifying phenotype within vessels and heart valves. CKD is also associated with left ventricular remodelling and dysfunction, which might contribute to increase the risk of heart failure and death in patients with VHD. Even if promising pharmacotherapeutic avenues are in development, no medical treatment can prevent or reduce the valvular calcific process. Patients with advanced CKD should undergo transthoracic echocardiography for detection of VHD, and if present, follow-up should be more frequent than what is recommended in the guidelines. Transcatheter valve replacement might be preferred over surgical replacement in patients with CKD and severe aortic valve stenosis.

      Résumé

      Les calcifications valvulaires sont fréquentes chez les atteints d’ isufisance rénale chronique, surtout en cas d’hémodialyse, et leur présence est associée à un mauvais pronostic. De plus, la progression des valvulopathies et la détérioration des bioprothèses sont accélérées dans cette population. Les mécanismes physiopathologiques impliqués dans le développement des valvulopathies sont similaires entre les patients avec et sans insuffisance rénale, cependant la dérégulation du métabolisme osseux est plus prononcée en cas de néphropathie, d’où un phénotype pro-calcifiant. L’insuffisance rénale entraine également un remodelage et une altération de la fonction du ventricule gauche, ce qui contribue à augmenter le risque d’insuffisance cardiaque et de décès en cas de valvulopathie. Même si des pistes thérapeutiques sont en développement, il n’existe aucun traitement médical permettant de prévenir ou de faire régresser les calcifications valvulaires. Chez les patients atteints d’ insuffisance rénale avancée, il est important d’effectuer une échocardiographie pour le dépistage des maladies valvulaires et d’effectuer un suivi plus rapproché que ce qui est recommandé dans les lignes directrices. Le remplacement valvulaire par cathéter semble être préférable au remplacement chirurgical chez les patients atteints d’ insuffisance rénale et de sténose aortique grave.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Garland J.S.
        • Holden R.M.
        • Groome P.A.
        • et al.
        Prevalence and associations of coronary artery calcification in patients with stages 3 to 5 CKD without cardiovascular disease.
        Am J Kidney Dis. 2008; 52: 849-858
        • Baglin A.
        • Hanslik T.
        • Vaillant J.N.
        • et al.
        Severe valvular heart disease in patients on chronic dialysis. A five-year multicenter French survey.
        Ann Med Interne (Paris). 1997; 148: 521-526
        • Briand M.
        • Pibarot P.
        • Després J.P.
        • et al.
        Metabolic syndrome is associated with faster degeneration of bioprosthetic valves.
        Circulation. 2006; 114: I512-I517
        • Fox C.S.
        • Larson M.G.
        • Vasan R.S.
        • et al.
        Cross-sectional association of kidney function with valvular and annular calcification: the Framingham heart study.
        J Am Soc Nephrol. 2006; 17: 521-527
        • Wang Z.
        • Jiang A.
        • Wei F.
        • Chen H.
        Cardiac valve calcification and risk of cardiovascular or all-cause mortality in dialysis patients: a meta-analysis.
        BMC Cardiovasc Disord. 2018; 18: 12
        • Paoletti E.
        • De Nicola L.
        • Gabbai F.B.
        • et al.
        Associations of left ventricular hypertrophy and geometry with adverse outcomes in patients with CKD and hypertension.
        Clin J Am Soc Nephrol. 2016; 11: 271-279
        • Parolari A.
        • Loardi C.
        • Mussoni L.
        • et al.
        Nonrheumatic calcific aortic stenosis: an overview from basic science to pharmacological prevention.
        Eur J Cardiothorac Surg. 2009; 35: 493-504
        • Rattazzi M.
        • Bertacco E.
        • Del Vecchio A.
        • et al.
        Aortic valve calcification in chronic kidney disease.
        Nephrol Dial Transplant. 2013; 28: 2968-2976
        • Shuvy M.
        • Abedat S.
        • Beeri R.
        • et al.
        Uraemic hyperparathyroidism causes a reversible inflammatory process of aortic valve calcification in rats.
        Cardiovasc Res. 2008; 79: 492-499
        • Schiffrin E.L.
        • Lipman M.L.
        • Mann J.F.
        Chronic kidney disease: effects on the cardiovascular system.
        Circulation. 2007; 116: 85-97
        • Matsuo H.
        • Dohi K.
        • Machida H.
        • et al.
        Echocardiographic assessment of cardiac structural and functional abnormalities in patients with end-stage renal disease receiving chronic hemodialysis.
        Circ J. 2018; 82: 586-595
        • Braun J.
        • Oldendorf M.
        • Moshage W.
        • et al.
        Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients.
        Am J Kidney Dis. 1996; 27: 394-401
        • Kume T.
        • Kawamoto T.
        • Akasaka T.
        • et al.
        Rate of progression of valvular aortic stenosis in patients undergoing dialysis.
        J Am Soc Echocardiogr. 2006; 19: 914-918
        • Holden R.M.
        • Sanfilippo A.S.
        • Hopman W.M.
        • et al.
        Warfarin and aortic valve calcification in hemodialysis patients.
        J Nephrol. 2007; 20: 417-422
        • Maher E.R.
        • Young G.
        • Smyth-Walsh B.
        • Pugh S.
        • Curtis J.R.
        Aortic and mitral valve calcification in patients with end-stage renal disease.
        Lancet. 1987; 2: 875-877
        • Straumann E.
        • Meyer B.
        • Misteli M.
        • Blumberg A.
        • Jenzer H.R.
        Aortic and mitral valve disease in patients with end stage renal failure on long-term haemodialysis.
        Br Heart J. 1992; 67: 236-239
        • Ribeiro S.
        • Ramos A.
        • Brandao A.
        • et al.
        Cardiac valve calcification in haemodialysis patients: role of calcium-phosphate metabolism.
        Nephrol Dial Transplant. 1998; 13: 2037-2040
        • Ventura J.E.
        • Tavella N.
        • Romero C.
        • et al.
        Aortic valve calcification is an independent factor of left ventricular hypertrophy in patients on maintenance haemodialysis.
        Nephrol Dial Transplant. 2002; 17: 1795-1801
        • Raggi P.
        • Boulay A.
        • Chasan-Taber S.
        • et al.
        Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease?.
        J Am Coll Cardiol. 2002; 39: 695-701
        • Wang A.Y.
        • Wang M.
        • Woo J.
        • et al.
        Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: a prospective study.
        J Am Soc Nephrol. 2003; 14: 159-168
        • Schönenberger A.
        • Winkelspecht B.
        • Köhler H.
        • Girndt M.
        High prevalence of aortic valve alterations in haemodialysis patients is associated with signs of chronic inflammation.
        Nephron Clin Pract. 2004; 96: c48-c55
        • Varma R.
        • Aronow W.S.
        • McClung J.A.
        • et al.
        Prevalence of valve calcium and association of valve calcium with coronary artery disease, atherosclerotic vascular disease, and all-cause mortality in 137 patients undergoing hemodialysis for chronic renal failure.
        Am J Cardiol. 2005; 95: 742-743
        • Tarrass F.
        • Benjelloun M.
        • Zamd M.
        • et al.
        Heart valve calcifications in patients with end-stage renal disease: analysis for risk factors.
        Nephrology (Carlton). 2006; 11: 494-496
        • Ix J.H.
        • Shlipak M.G.
        • Katz R.
        • et al.
        Kidney function and aortic valve and mitral annular calcification in the Multi-Ethnic Study of Atherosclerosis (MESA).
        Am J Kidney Dis. 2007; 50: 412-420
        • Adeney K.L.
        • Siscovick D.S.
        • Ix J.H.
        • et al.
        Association of serum phosphate with vascular and valvular calcification in moderate CKD.
        J Am Soc Nephrol. 2009; 20: 381-387
        • Ikee R.
        • Honda K.
        • Ishioka K.
        • et al.
        Differences in associated factors between aortic and mitral valve calcification in hemodialysis.
        Hypertens Res. 2010; 33: 622-626
        • Avila-Díaz M.
        • Mora-Villalpando C.
        • Prado-Uribe Mdel C.
        • et al.
        De novo development of heart valve calcification in incident peritoneal dialysis patients.
        Arch Med Res. 2013; 44: 638-644
        • Rong S.
        • Qiu X.
        • Jin X.
        • et al.
        Risk factors for heart valve calcification in chronic kidney disease.
        Medicine (Baltimore). 2018; 97e9804
        • Kim D.
        • Shim C.Y.
        • Hong G.R.
        • et al.
        Effect of end-stage renal disease on rate of progression of aortic stenosis.
        Am J Cardiol. 2016; 117: 1972-1977
        • Zentner D.
        • Hunt D.
        • Chan W.
        • et al.
        Prospective evaluation of aortic stenosis in end-stage kidney disease: a more fulminant process?.
        Nephrol Dial Transplant. 2011; 26: 1651-1655
        • Ohara T.
        • Hashimoto Y.
        • Matsumura A.
        • Suzuki M.
        • Isobe M.
        Accelerated progression and morbidity in patients with aortic stenosis on chronic dialysis.
        Circ J. 2005; 69: 1535-1539
        • Wongpraparut N.
        • Apiyasawat S.
        • Crespo G.
        • et al.
        Determinants of progression of aortic stenosis in patients aged >= 40 years.
        Am J Cardiol. 2002; 89: 350-352
        • Perkovic V.
        • Hunt D.
        • Griffin S.V.
        • du Plessis M.
        • Becker G.J.
        Accelerated progression of calcific aortic stenosis in dialysis patients.
        Nephron Clin Pract. 2003; 94: c40-c45
        • Malergue M.C.
        • Urena P.
        • Prieur P.
        • Guédon-Rapoud C.
        • Pétrover M.
        Incidence and development of aortic stenosis in chronic hemodialysis. An ultrasonographic and biological study of 112 patients [in French].
        Arch Mal Coeur Vaiss. 1997; 90: 1595-1601
        • Kawase Y.
        • Taniguchi T.
        • Morimoto T.
        • et al.
        Severe aortic stenosis in dialysis patients.
        J Am Heart Assoc. 2017; 6e00496
        • Tian Y.
        • Feng S.
        • Zhan Z.
        • et al.
        Risk factors for new-onset cardiac valve calcification in patients on maintenance peritoneal dialysis.
        Cardiorenal Med. 2016; 6: 150-158
        • Otto C.M.
        • Kuusisto J.
        • Reichenbach D.D.
        • Gown A.M.
        • O'Brien K.D.
        Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies.
        Circulation. 1994; 90: 844-853
        • Otto C.M.
        Calcific aortic stenosis--time to look more closely at the valve.
        N Engl J Med. 2008; 359: 1395-1398
        • Verrier E.D.
        • Boyle Jr., E.M.
        Endothelial cell injury in cardiovascular surgery.
        Ann Thorac Surg. 1996; 62: 915-922
        • Diehl P.
        • Nagy F.
        • Sossong V.
        • et al.
        Increased levels of circulating microparticles in patients with severe aortic valve stenosis.
        Thromb Haemost. 2008; 99: 711-719
        • Côté C.
        • Pibarot P.
        • Després J.P.
        • et al.
        Association between circulating oxidised low-density lipoprotein and fibrocalcific remodelling of the aortic valve in aortic stenosis.
        Heart. 2008; 94: 1175-1180
        • Stewart B.F.
        • Siscovick D.
        • Lind B.K.
        • et al.
        Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study.
        J Am Coll Cardiol. 1997; 29: 630-634
        • Capoulade R.
        • Yeang C.
        • Chan K.L.
        • Pibarot P.
        • Tsimikas S.
        Association of mild to moderate aortic valve stenosis progression with higher lipoprotein(a) and oxidized phospholipid levels: secondary analysis of a randomized clinical trial.
        JAMA Cardiol. 2018; 3: 1212-1217
        • Thanassoulis G.
        • Campbell C.Y.
        • Owens D.S.
        • et al.
        Genetic associations with valvular calcification and aortic stenosis.
        N Engl J Med. 2013; 368: 503-512
        • Boon A.
        • Cheriex E.
        • Lodder J.
        • Kessels F.
        Cardiac valve calcification: characteristics of patients with calcification of the mitral annulus or aortic valve.
        Heart. 1997; 78: 472-474
        • Hopewell J.C.
        • Haynes R.
        • Baigent C.
        The role of lipoprotein (a) in chronic kidney disease.
        J Lipid Res. 2018; 59: 577-585
        • Caira F.C.
        • Stock S.R.
        • Gleason T.G.
        • et al.
        Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation.
        J Am Coll Cardiol. 2006; 47: 1707-1712
        • O’Brien K.D.
        • Shavelle D.M.
        • Caulfield M.T.
        • et al.
        Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma.
        Circulation. 2002; 106: 2224-2230
        • Miller J.D.
        • Chu Y.
        • Brooks R.M.
        • et al.
        Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans.
        J Am Coll Cardiol. 2008; 52: 843-850
        • Böger R.H.
        Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond.
        Ann Med. 2006; 38: 126-136
        • Bertacco E.
        • Millioni R.
        • Arrigoni G.
        • et al.
        Proteomic analysis of clonal interstitial aortic valve cells acquiring a pro-calcific profile.
        J Proteome Res. 2010; 9: 5913-5921
        • Ngo D.T.
        • Heresztyn T.
        • Mishra K.
        • Marwick T.H.
        • Horowitz J.D.
        Aortic stenosis is associated with elevated plasma levels of asymmetric dimethylarginine (ADMA).
        Nitric Oxide. 2007; 16: 197-201
        • Cagirci G.
        • Cay S.
        • Canga A.
        • et al.
        Association between plasma asymmetrical dimethylarginine activity and severity of aortic valve stenosis.
        J Cardiovasc Med (Hagerstown). 2011; 12: 96-101
        • Kooman J.P.
        • Dekker M.J.
        • Usvyat L.A.
        • et al.
        Inflammation and premature aging in advanced chronic kidney disease.
        Am J Physiol Renal Physiol. 2017; 313: F938-F950
        • Leskinen Y.
        • Paana T.
        • Saha H.
        • et al.
        Valvular calcification and its relationship to atherosclerosis in chronic kidney disease.
        J Heart Valve Dis. 2009; 18: 429-438
        • Wang A.Y.
        • Woo J.
        • Wang M.
        • et al.
        Association of inflammation and malnutrition with cardiac valve calcification in continuous ambulatory peritoneal dialysis patients.
        J Am Soc Nephrol. 2001; 12: 1927-1936
        • Mohler 3rd, E.R.
        • Gannon F.
        • Reynolds C.
        • et al.
        Bone formation and inflammation in cardiac valves.
        Circulation. 2001; 103: 1522-1528
        • Rajamannan N.M.
        • Subramaniam M.
        • Rickard D.
        • et al.
        Human aortic valve calcification is associated with an osteoblast phenotype.
        Circulation. 2003; 107: 2181-2184
        • Aikawa E.
        • Nahrendorf M.
        • Sosnovik D.
        • et al.
        Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease.
        Circulation. 2007; 115: 377-386
        • Pohjolainen V.
        • Taskinen P.
        • Soini Y.
        • et al.
        Noncollagenous bone matrix proteins as a part of calcific aortic valve disease regulation.
        Hum Pathol. 2008; 39: 1695-1701
        • Bennett B.J.
        • Scatena M.
        • Kirk E.A.
        • et al.
        Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2117-2124
        • Steinmetz M.
        • Skowasch D.
        • Wernert N.
        • et al.
        Differential profile of the OPG/RANKL/RANK-system in degenerative aortic native and bioprosthetic valves.
        J Heart Valve Dis. 2008; 17: 187-193
        • Schafer C.
        • Heiss A.
        • Schwarz A.
        • et al.
        The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification.
        J Clin Invest. 2003; 112: 357-366
        • Schurgers L.J.
        • Cranenburg E.C.
        • Vermeer C.
        Matrix Gla-protein: the calcification inhibitor in need of vitamin K.
        Thromb Haemost. 2008; 100: 593-603
        • Chiyoya M.
        • Seya K.
        • Yu Z.
        • et al.
        Matrix Gla protein negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves.
        J Pharmacol Sci. 2018; 136: 257-265
        • Shea M.K.
        • Holden R.M.
        Vitamin K status and vascular calcification: evidence from observational and clinical studies.
        Adv Nutr. 2012; 3: 158-165
        • Yamamoto K.
        • Koretsune Y.
        • Akasaka T.
        • et al.
        Effects of vitamin K antagonist on aortic valve degeneration in non-valvular atrial fibrillation patients: prospective 4-year observational study.
        Thromb Res. 2017; 160: 69-75
        • Di Lullo L.
        • Tripepi G.
        • Ronco C.
        • et al.
        Cardiac valve calcification and use of anticoagulants: Preliminary observation of a potentially modifiable risk factor.
        Int J Cardiol. 2019; 278: 243-249
        • Tastet L.
        • Pibarot P.
        • Shen M.
        • et al.
        Oral anticoagulation therapy and progression of calcific aortic valve stenosis.
        J Am Coll Cardiol. 2019; 73: 1869-1871
        • Koos R.
        • Brandenburg V.
        • Mahnken A.H.
        • et al.
        Association of fetuin-A levels with the progression of aortic valve calcification in non-dialyzed patients.
        Eur Heart J. 2009; 30: 2054-2061
        • Ix J.H.
        • Chertow G.M.
        • Shlipak M.G.
        • et al.
        Association of fetuin-A with mitral annular calcification and aortic stenosis among persons with coronary heart disease: data from the Heart and Soul Study.
        Circulation. 2007; 115: 2533-2539
        • Kubota N.
        • Testuz A.
        • Boutten A.
        • et al.
        Impact of fetuin-A on progression of calcific aortic valve stenosis - The COFRASA - GENERAC study.
        Int J Cardiol. 2018; 265: 52-57
        • El-Shehaby A.M.
        • Zakaria A.
        • El-Khatib M.
        • Mostafa N.
        Association of fetuin-A and cardiac calcification and inflammation levels in hemodialysis patients.
        Scand J Clin Lab Invest. 2010; 70: 575-582
        • Wang A.Y.
        • Woo J.
        • Lam C.W.
        • et al.
        Associations of serum fetuin-A with malnutrition, inflammation, atherosclerosis and valvular calcification syndrome and outcome in peritoneal dialysis patients.
        Nephrol Dial Transplant. 2005; 20: 1676-1685
        • Ketteler M.
        • Bongartz P.
        • Westenfeld R.
        • et al.
        Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study.
        Lancet. 2003; 361: 827-833
        • Lacey D.L.
        • Timms E.
        • Tan H.L.
        • et al.
        Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.
        Cell. 1998; 93: 165-176
        • Partridge N.C.
        • Li X.
        • Qin L.
        Understanding parathyroid hormone action.
        Ann N Y Acad Sci. 2006; 1068: 187-193
        • Iwata S.
        • Hyodo E.
        • Yanagi S.
        • et al.
        Parathyroid hormone and systolic blood pressure accelerate the progression of aortic valve stenosis in chronic hemodialysis patients.
        Int J Cardiol. 2013; 163: 256-259
        • Rattazzi M.
        • Iop L.
        • Faggin E.
        • et al.
        Clones of interstitial cells from bovine aortic valve exhibit different calcifying potential when exposed to endotoxin and phosphate.
        Arterioscler Thromb Vasc Biol. 2008; 28: 2165-2172
        • Zoppellaro G.
        • Faggin E.
        • Puato M.
        • Pauletto P.
        • Rattazzi M.
        Fibroblast growth factor 23 and the bone-vascular axis: lessons learned from animal studies.
        Am J Kidney Dis. 2012; 59: 135-144
        • Gutiérrez O.M.
        • Mannstadt M.
        • Isakova T.
        • et al.
        Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis.
        N Engl J Med. 2008; 359: 584-592
        • Kirkpantur A.
        • Balci M.
        • Gurbuz O.A.
        • et al.
        Serum fibroblast growth factor-23 (FGF-23) levels are independently associated with left ventricular mass and myocardial performance index in maintenance haemodialysis patients.
        Nephrol Dial Transplant. 2011; 26: 1346-1354
        • Di Lullo L.
        • Gorini A.
        • Bellasi A.
        • et al.
        Fibroblast growth factor 23 and parathyroid hormone predict extent of aortic valve calcifications in patients with mild to moderate chronic kidney disease.
        Clin Kidney J. 2015; 8: 732-736
        • Unsal A.
        • Kose Budak S.
        • Koc Y.
        • et al.
        Relationship of fibroblast growth factor 23 with left ventricle mass index and coronary calcificaton in chronic renal disease.
        Kidney Blood Press Res. 2012; 36: 55-64
        • Chen J.
        • Lin Y.
        • Sun Z.
        Deficiency in the anti-aging gene Klotho promotes aortic valve fibrosis through AMPKalpha-mediated activation of RUNX2.
        Aging Cell. 2016; 15: 853-860
        • Chen J.
        • Fan J.
        • Wang S.
        • Sun Z.
        Secreted Klotho attenuates inflammation-associated aortic valve fibrosis in senescence-accelerated mice P1.
        Hypertension. 2018; 71: 877-885
        • Li F.
        • Yao Q.
        • Ao L.
        • et al.
        Klotho suppresses high phosphate-induced osteogenic responses in human aortic valve interstitial cells through inhibition of Sox9.
        J Mol Med (Berl). 2017; 95: 739-751
        • Baumgartner H.
        • Falk V.
        • Bax J.J.
        • et al.
        2017 ESC/EACTS guidelines for the management of valvular heart disease: the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS).
        Eur Heart J. 2017; 38: 2739-2791
        • Salaun E.
        • Mahjoub H.
        • Girerd N.
        • et al.
        Rate, timing, correlates, and outcomes of hemodynamic valve deterioration after bioprosthetic surgical aortic valve replacement.
        Circulation. 2018; 138: 971-985
        • Okada N.
        • Tajima K.
        • Takami Y.
        • et al.
        Valve selection for the aortic position in dialysis patients.
        Ann Thorac Surg. 2015; 99: 1524-1531
        • Lamberti J.J.
        • Wainer B.H.
        • Fisher K.A.
        • Karunaratne H.B.
        • Al-Sadir J.
        Calcific stenosis of the porcine heterograft.
        Ann Thorac Surg. 1979; 28: 28-32
        • Brinkman W.T.
        • Williams W.H.
        • Guyton R.A.
        • Jones E.L.
        • Craver J.M.
        Valve replacement in patients on chronic renal dialysis: implications for valve prosthesis selection.
        Ann Thorac Surg. 2002; 74 ([discussion: 42]): 37-42
        • Bianchi G.
        • Solinas M.
        • Bevilacqua S.
        • Glauber M.
        Are bioprostheses associated with better outcome than mechanical valves in patients with chronic kidney disease requiring dialysis who undergo valve surgery?.
        Interact Cardiovasc Thorac Surg. 2012; 15: 473-483
        • Williams M.L.
        • Bavaria J.E.
        • Acker M.A.
        • et al.
        Valve selection in end-stage renal disease: should it always be biological?.
        Ann Thorac Surg. 2016; 102: 1531-1535
        • Kaplon R.J.
        • Cosgrove 3rd, D.M.
        • Gillinov A.M.
        • et al.
        Cardiac valve replacement in patients on dialysis: influence of prosthesis on survival.
        Ann Thorac Surg. 2000; 70: 438-441
        • Altarabsheh S.E.
        • Deo S.V.
        • Dunlay S.M.
        • et al.
        Tissue valves are preferable for patients with end-stage renal disease: an aggregate meta-analysis.
        J Card Surg. 2016; 31: 507-514
        • Bolignano D.
        • Pisano A.
        • Coppolino G.
        • Tripepi G.L.
        • D’Arrigo G.
        Pulmonary hypertension predicts adverse outcomes in renal patients: a systematic review and meta-analysis.
        Ther Apher Dial. 2019; 23: 369-384
        • Edwards N.C.
        • Moody W.E.
        • Yuan M.
        • et al.
        Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease.
        Am J Cardiol. 2015; 115: 1311-1317
        • Hung M.J.
        • Yang N.I.
        • Wu I.W.
        • et al.
        Echocardiographic assessment of structural and functional cardiac remodeling in patients with predialysis chronic kidney disease.
        Echocardiography. 2010; 27: 621-629
        • Hawwa N.
        • Shrestha K.
        • Hammadah M.
        • et al.
        Reverse remodeling and prognosis following kidney transplantation in contemporary patients with cardiac dysfunction.
        J Am Coll Cardiol. 2015; 66: 1779-1787
        • Martin F.L.
        • McKie P.M.
        • Cataliotti A.
        • et al.
        Experimental mild renal insufficiency mediates early cardiac apoptosis, fibrosis, and diastolic dysfunction: a kidney-heart connection.
        Am J Physiol Regul Integr Comp Physiol. 2012; 302: R292-R299
        • Leifheit-Nestler M.
        • Kirchhoff F.
        • Nespor J.
        • et al.
        Fibroblast growth factor 23 is induced by an activated renin-angiotensin-aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts.
        Nephrol Dial Transplant. 2018; 33: 1722-1734
        • Ky B.
        • Shults J.
        • Keane M.G.
        • et al.
        FGF23 modifies the relationship between vitamin D and cardiac remodeling.
        Circ Heart Fail. 2013; 6: 817-824
        • Xie J.
        • Yoon J.
        • An S.W.
        • Kuro-o M.
        • Huang C.L.
        Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate.
        J Am Soc Nephrol. 2015; 26: 1150-1160
        • Nubé M.J.
        • Hoekstra T.
        • Doganer V.
        • et al.
        Left ventricular geometric patterns in end-stage kidney disease: determinants and course over time.
        Hemodial Int. 2018; 22: 359-368
        • Reddy Y.N.V.
        • Obokata M.
        • Dean P.G.
        • et al.
        Long-term cardiovascular changes following creation of arteriovenous fistula in patients with end stage renal disease.
        Eur Heart J. 2017; 38: 1913-1923
        • Alkhouli M.
        • Sandhu P.
        • Boobes K.
        • et al.
        Cardiac complications of arteriovenous fistulas in patients with end-stage renal disease.
        Nefrologia. 2015; 35: 234-245
        • Chan K.L.
        • Teo K.
        • Dumesnil J.G.
        • Ni A.
        • Tam J.
        Effect of lipid lowering with rosuvastatin on progression of aortic stenosis. Results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial.
        Circulation. 2010; 121: 306-314
        • Cowell S.J.
        • Newby D.E.
        • Prescott R.J.
        • et al.
        A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis.
        N Engl J Med. 2005; 352: 2389-2397
        • Rossebo A.B.
        • Pedersen T.R.
        • Boman K.
        • et al.
        Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis.
        N Engl J Med. 2008; 359: 1343-1356
        • Vuorio A.
        • Watts G.F.
        • Kovanen P.T.
        Lipoprotein(a) as a risk factor for calcific aortic valvulopathy in heterozygous familial hypercholesterolemia.
        Atherosclerosis. 2019; 281: 25-30
        • Bull S.
        • Loudon M.
        • Francis J.M.
        • et al.
        A prospective, double-blind, randomized controlled trial of the angiotensin-converting enzyme inhibitor Ramipril In Aortic Stenosis (RIAS trial).
        Eur Heart J Cardiovasc Imaging. 2015; 16: 834-841
        • Andersson C.
        • Abdulla J.
        Is the use of renin-angiotensin system inhibitors in patients with aortic valve stenosis safe and of prognostic benefit? A systematic review and meta-analysis.
        Eur Heart J Cardiovasc Pharmacother. 2017; 3: 21-27
        • Côté N.
        • Mahmut A.
        • Fournier D.
        • et al.
        Angiotensin receptor blockers are associated with reduced fibrosis and interleukin-6 expression in calcific aortic valve disease.
        Pathobiology. 2014; 81: 15-24
        • Nadir M.A.
        • Wei L.
        • Elder D.H.
        • et al.
        Impact of renin-angiotensin system blockade therapy on outcome in aortic stenosis.
        J Am Coll Cardiol. 2011; 58: 570-576
        • Suematsu Y.
        • Jing W.
        • Nunes A.
        • et al.
        LCZ696 (sacubitril/valsartan), an angiotensin-receptor neprilysin inhibitor, attenuates cardiac hypertrophy, fibrosis, and vasculopathy in a rat model of chronic kidney disease.
        J Card Fail. 2018; 24: 266-275
        • Aksoy O.
        • Cam A.
        • Goel S.S.
        • et al.
        Do bisphosphonates slow the progression of aortic stenosis?.
        J Am Coll Cardiol. 2012; 59: 1452-1459
        • Elmariah S.
        • Delaney J.A.C.
        • O’Brien K.D.
        • et al.
        Bisphosphonate use and prevalence of valvular and vascular calcification in women: MESA (The Multi-Ethnic Study of Atherosclerosis).
        J Am Coll Cardiol. 2010; 56: 1752-1759
        • Lerman D.A.
        • Prasad S.
        • Alotti N.
        Denosumab could be a potential inhibitor of valvular interstitial cells calcification in vitro.
        Int J Cardiovasc Res. 2016; 6
        • Samelson E.J.
        • Miller P.D.
        • Christiansen C.
        • et al.
        RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk.
        J Bone Miner Res. 2014; 29: 450-457
        • Di Lullo L.
        • Floccari F.
        • Santoboni A.
        • et al.
        Progression of cardiac valve calcification and decline of renal function in CKD patients.
        J Nephrol. 2013; 26: 739-744
        • Raggi P.
        • Chertow G.M.
        • Torres P.U.
        • et al.
        The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis.
        Nephrol Dial Transplant. 2011; 26: 1327-1339
        • Kalra P.A.
        • Burlacu A.
        • Ferro C.J.
        • Covic A.
        Which anticoagulants should be used for stroke prevention in non-valvular atrial fibrillation and severe chronic kidney disease?.
        Curr Opin Nephrol Hypertens. 2018; 27: 420-425
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305
        • Go A.S.
        Cardiovascular disease consequences of CKD.
        Semin Nephrol. 2016; 36: 293-304
        • Kristensen S.D.
        • Knuuti J.
        • Saraste A.
        • et al.
        2014 ESC/ESA guidelines on non-cardiac surgery: cardiovascular assessment and management: the Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA).
        Eur Heart J. 2014; 35: 2383-2431
        • D’Errigo P.
        • Moretti C.
        • D’Ascenzo F.
        • et al.
        Transcatheter aortic valve implantation vs surgical aortic valve replacement for severe aortic stenosis in patients with chronic kidney disease stages 3b to 5.
        Ann Thorac Surg. 2016; 102: 540-547
        • Thourani V.H.
        • Forcillo J.
        • Beohar N.
        • et al.
        Impact of preoperative chronic kidney disease in 2,531 high-risk and inoperable patients undergoing transcatheter aortic valve replacement in the PARTNER trial.
        Ann Thorac Surg. 2016; 102: 1172-1180
        • Gupta T.
        • Goel K.
        • Kolte D.
        • et al.
        Association of chronic kidney disease with in-hospital outcomes of transcatheter aortic valve replacement.
        JACC Cardiovasc Interv. 2017; 10: 2050-2060
        • Bhatia N.
        • Agrawal S.
        • Yang S.
        • et al.
        In-hospital outcomes of transcatheter aortic valve implantation in patients with end-stage renal disease on dialysis from a large national database.
        Am J Cardiol. 2017; 120: 1355-1358
        • Condado J.F.
        • Maini A.
        • Leshnower B.
        • et al.
        End-stage renal disease and severe aortic stenosis: does valve replacement improve one-year outcomes?.
        Catheter Cardiovasc Interv. 2017; 89: 1109-1115
      1. Vindhyal MR, Ndunda P, Khayyat S, Boppana VS, Fanari Z. Trans-catheter aortic valve replacement and surgical aortic valve replacement outcomes in patients with dialysis: systematic review and meta-analysis [e-pub ahead of print] Cardiovasc Revasc Med. https://doi.org/10.1016/j.carrev.2018.12.002.

        • Kumar N.
        • Khera R.
        • Garg N.
        • et al.
        Comparison of outcomes of transcatheter vs surgical aortic valve replacement in patients with chronic kidney disease.
        Am J Cardiol. 2018; 121: 343-348
        • Pineda A.M.
        • Kevin Harrison J.
        • Kleiman N.S.
        • et al.
        Clinical impact of baseline chronic kidney disease in patients undergoing transcatheter or surgical aortic valve replacement.
        Catheter Cardiovasc Interv. 2019; 93: 740-748
        • Alkhalil A.
        • Golbari S.
        • Song D.
        • et al.
        In-hospital outcomes of transcatheter vs surgical aortic valve replacement in end stage renal disease.
        Catheter Cardiovasc Interv. 2018; 92: 757-765
        • Yoon S.H.
        • Whisenant B.K.
        • Bleiziffer S.
        • et al.
        Outcomes of transcatheter mitral valve replacement for degenerated bioprostheses, failed annuloplasty rings, and mitral annular calcification.
        Eur Heart J. 2019; 40: 441-451