Advertisement
Canadian Journal of Cardiology

Neurocognition in Adult Congenital Heart Disease: How to Monitor and Prevent Progressive Decline

      Abstract

      Children born with congenital heart disease (CHD) are now living to adulthood in unprecedented numbers and many will eventually live to become senior citizens. As care goals shift from surviving to thriving, a new focus on quality of life has emerged. Neurocognition and the ability to participate fully in society, form meaningful relationships, and collaborate effectively with the health care system are important considerations. As adults with CHD age, research regarding their cognitive function becomes prescient. The focus is now shifting from defining neurocognitive deficits in children with CHD to preventing neurocognitive decline in adults living with CHD. In this review, we describe the possible etiologies and predictors of neurocognitive decline in adults with CHD. We performed a comprehensive literature review to identify all of the current data available on neurocognitive function in adults with CHD. We summarize the available evidence by describing common deficits in this patient population and the potential effects of these deficits on adult functioning, health care decision-making, and long-term relationships with care providers. We review potential modifiable etiologies for progressive neurocognitive decline and suggest strategies for surveillance and prevention of the potential decline. We conclude that the current information available regarding the aging brain of adults with CHD and the effect of neurocognitive decline on morbidity and mortality is woefully insufficient. This review, therefore, provides a roadmap for future research endeavours to study neurocognition in older adults with CHD.

      Résumé

      Un nombre sans précédent d’enfants nés avec une cardiopathie congénitale atteignent maintenant l’âge adulte, et bon nombre deviendront des personnes âgées. Alors que les objectifs thérapeutiques passent de la survie à une vie épanouie, la qualité de vie suscite un nouvel intérêt. La fonction neurocognitive et la capacité de participer pleinement à la société, d’établir des relations significatives et de collaborer efficacement avec le système de soins de santé constituent d’importantes considérations. Au fur et à mesure que les adultes atteints de cardiopathie congénitale vieillissent, il devient important de mener des recherches sur leur fonction cognitive. L’intérêt passe maintenant de la définition des déficits neurocognitifs chez les enfants atteints de cardiopathie congénitale à la prévention du déclin neurocognitif chez les adultes présentant une cardiopathie congénitale. Dans cette analyse, nous décrivons les étiologies et les facteurs de prédiction possibles du déclin neurocognitif chez les adultes atteints de cardiopathie congénitale. Nous avons effectué un examen approfondi de la littérature pour relever toutes les données actuelles sur la fonction neurocognitive chez les adultes présentant une cardiopathie congénitale. Nous avons résumé les données probantes existantes en décrivant les déficits fréquents chez cette population de patients et les effets possibles de ces déficits sur la fonction chez l’adulte, la prise de décision en soins de santé et le lien à long terme avec les dispensateurs de soins. Nous avons examiné les étiologies possibles modifiables du déclin progressif de la fonction neurocognitive et proposons des stratégies de surveillance et de prévention d’un déclin possible. Nous avons conclu que les données actuelles sur le cerveau vieillissant de l’adulte atteint de cardiopathie congénitale et les effets du déclin neurocognitif sur la morbidité et la mortalité sont nettement insuffisantes. Par conséquent, cette analyse fournit une voie à suivre pour des travaux de recherche futurs sur la fonction neurocognitive chez des adultes plus âgés atteints de cardiopathie congénitale.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Samanek M.
        Children with congenital heart disease: probability of natural survivor.
        Pediatr Cardiol. 1998; 13: 152-158
        • Khairy P.
        • Ionescu-Ittu R.
        • Mackie A.S.
        • et al.
        Changing mortality in congenital heart disease.
        J Am Coll Cardiol. 2010; 56: 1149-1157
        • Marelli A.J.
        • Ionescu-Ittu R.
        • Mackie A.S.
        • et al.
        Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010.
        Circulation. 2014; 130: 749-756
        • Nguyen L.T.
        • Maul T.M.
        • Hindes M.
        • et al.
        Current and future status of adult congenital training in North America.
        Am J Cardiol. 2015; 115: 1151-1153
        • Nattel S.
        • Adrianzen L.
        • Kessler E.C.
        • et al.
        Congenital heart disease and neurodevelopment: clinical manifestations, genetics, mechanisms, and implications.
        Can J Cardiol. 2017; 33: 1543-1555
        • Sun L.
        • Macgowan C.K.
        • Sled J.G.
        • et al.
        Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease.
        Circulation. 2015; 131: 1313-1323
        • Galli K.K.
        • Zimmerman R.A.
        • Jarvik G.P.
        • et al.
        Periventricular leukomalacia is common after neonatal cardiac surgery.
        J Thorac Cardiovasc Surg. 2004; 127: 692-704
        • Miller S.P.
        • McQuillen P.S.
        • Hamrick S.
        • et al.
        Abnormal brain development in newborns with congenital heart disease.
        N Engl J Med. 2007; 357: 1928-1938
        • Brossard-Racine M.
        • du Plessis A.J.
        • Vezina G.
        • et al.
        Prevalence and spectrum of in utero structural brain abnormalities in fetuses with complex congenital heart disease.
        AJNR Am J Neuroradiol. 2014; 35: 1593-1599
        • Karsdorp P.A.
        • Evereard W.
        • Kindt M.
        • Mulder B.
        Psychological and cognitive functioning in children and adolescents with congenital heart disease: a meta-analysis.
        J Pediatr Psychol. 2007; 32: 527-541
        • Cassidy A.R.
        • White M.T.
        • DeMaso D.R.
        • Newburger J.W.
        • Bellinger D.C.
        Executive function in children and adolescents with critical cyanotic congenital heart disease.
        J Int Neuropsychol Soc. 2015; 21: 34-49
        • Tyagi M.
        • Austin K.
        • Stygall J.
        • et al.
        What do we know about cognitive functioning in adult congenital heart disease?.
        Cardiol Young. 2014; 24: 13-19
        • Daliento L.
        • Mapelli D.
        • Russo G.
        • et al.
        Health related quality of life in adults with repaired tetralogy of Fallot: psychosocial and cognitive outcomes.
        Heart. 2005; 91: 213-218
        • Klouda L.
        • Franklin W.J.
        • Saraf A.
        • Parekh D.R.
        • Schwartz D.D.
        Neurocognitive and executive functioning in adult survivors of congenital heart disease.
        Congenit Heart Dis. 2017; 12: 92-98
        • White K.S.
        • Purdue C.
        • Ludbrook P.
        • et al.
        Cardiac denial and psychological predictors of cardiac care adherence in adults with congenital heart disease.
        Behav Modif. 2016; 40: 29-50
        • Deng L.X.
        • Khan A.M.
        • Drajpuch D.
        • et al.
        Prevalence and correlates of post-traumatic stress disorder in adults with congenital heart disease.
        Am J Cardiol. 2016; 117: 853-857
        • Marelli A.
        • Miller S.P.
        • Marino B.S.
        • Jefferson A.L.
        • Newburger J.W.
        Brain in congenital heart disease across the lifespan: cumulative burden of injury.
        Circulation. 2016; 133: 1951-1962
        • Li Y.
        • Yin S.
        • Fang J.
        • et al.
        Neurodevelopmental delay with critical congenital heart disease is mainly from prenatal injury not infant cardiac surgery: current evidence based on a meta-analysis of functional magnetic resonance imaging.
        Ultrasound Obstet Gynecol. 2015; 45: 639-648
        • Mebius M.J.
        • Kooi E.M.W.
        • Bilardo C.M.
        • Bos A.F.
        Brain injury and neurodevelopmental outcome in congenital heart disease: a systematic review.
        Pediatrics. 2017; 140e20164055
        • Owen M.
        • Shevell M.
        • Donofrio M.
        • et al.
        Brain volume and neurobehavior in newborns with complex congenital heart defects.
        J Pediatr. 2014; 164 (1121-7.e1)
        • Homsy J.
        • Zaidi S.
        • Shen Y.
        • et al.
        De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies.
        Science. 2015; 350: 1262-1266
        • Radhakrishna U.
        • Vishweswaraiah S.
        • Veerappa A.M.
        • et al.
        Newborn blood DNA epigenetic variations and signaling pathway genes associated with tetralogy of Fallot (TOF).
        PLoS One. 2018; 13e0203893
        • Yan L.
        • Guo H.
        • Hu B.
        • et al.
        Epigenomic landscape of human fetal brain, heart, and liver.
        J Biol Chem. 2016; 291: 4386-4398
        • Laas E.
        • Lelong N.
        • Thieulin A.C.
        • et al.
        Preterm birth and congenital heart defects: a population-based study.
        Pediatrics. 2012; 130: e829-e837
        • Laas E.
        • Lelong N.
        • Ancel P.Y.
        • et al.
        Impact of preterm birth on infant mortality for newborns with congenital heart defects: the EPICARD population-based cohort study.
        BMC Pediatr. 2017; 17: 124
        • Pappas A.
        • Shankaran S.
        • Hansen N.I.
        • et al.
        Outcome of extremely preterm infants (<1,000 g) with congenital heart defects from the National Institute of Child Health and Human Development Neonatal Research Network.
        Pediatr Cardiol. 2012; 33: 1415-1426
        • Peyvandi S.
        • Latal B.
        • Miller S.P.
        • McQuillen P.S.
        The neonatal brain in critical congenital heart disease: insights and future directions.
        Neuroimage. 2019; 185: 776-782
        • McQuillen P.S.
        • Barkovich A.J.
        • Hamrick S.E.
        • et al.
        Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects.
        Stroke. 2007; 38: 736-741
        • Lynch J.M.
        • Buckley E.M.
        • Schwab P.J.
        • et al.
        Time to surgery and preoperative cerebral hemodynamics predict postoperative white matter injury in neonates with hypoplastic left heart syndrome.
        J Thorac Cardiovasc Surg. 2014; 148: 2181-2188
        • Hovels-Gurich H.H.
        Factors influencing neurodevelopment after cardiac surgery during infancy.
        Front Pediatr. 2016; 4: 137
        • Lynch J.M.
        • Ko T.
        • Busch D.R.
        • et al.
        Preoperative cerebral hemodynamics from birth to surgery in neonates with critical congenital heart disease.
        J Thorac Cardiovasc Surg. 2018; 156: 1657-1664
        • Peyvandi S.
        • Chau V.
        • Guo T.
        • et al.
        Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease.
        J Am Coll Cardiol. 2018; 71: 1986-1996
        • Claessens N.H.P.
        • Algra S.O.
        • Ouwehand T.L.
        • et al.
        Perioperative neonatal brain injury is associated with worse school-age neurodevelopment in children with critical congenital heart disease.
        Dev Med Child Neurol. 2018; 60: 1052-1058
        • Keir M.
        • Bailey B.
        • Lee A.
        • Kovacs A.
        • Roche S.L.
        Narrative analysis of adults with complex congenital heart disease: childhood experiences and their lifelong reverberations.
        Congenit Heart Dis. 2018; 13: 740-747
        • Berghammer M.
        • Dellborg M.
        • Ekman I.
        Young adults experiences of living with congenital heart disease.
        Int J Cardiol. 2006; 110: 340-347
        • Marino B.S.
        • Lipkin P.H.
        • Newburger J.W.
        • et al.
        Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement form the American Heart Association.
        Circulation. 2012; 126: 1143-1172
        • Wernovsky G.
        Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital heart disease.
        Cardiol Young. 2006; 16: 92-104
        • Woodcock S.
        • Hitches E.
        Potential or problem? An investigation of secondary school teachers’ attributions of the educational outcomes of students with specific learning difficulties.
        Ann Dyslexia. 2017; 67: 299-317
        • Harbison A.L.
        • Grady S.
        • Chi K.
        • Fernandes S.M.
        Provision of transition education and referral patterns from pediatric cardiology to adult cardiac care.
        Pediatr Cardiol. 2016; 37: 232-238
        • Karsenty C.
        • Maury P.
        • Blot-Souletie N.
        • et al.
        The medical history of adults with complex congenital heart disease affects their social development and professional activity.
        Arch Cardiovasc Dis. 2015; 108: 589-597
        • Reid G.J.
        • Webb G.D.
        • Barzel M.
        • et al.
        Estimates of life expectancy by adolescents and young adults with congenital heart disease.
        J Am Coll Cardiol. 2006; 48: 349-355
        • Sluman M.A.
        • Zomer A.C.
        • Vaartjes I.
        • Bouma B.J.
        • Mulder B.J.M.
        Congenital heart disease may hurt men more than women in job participation.
        Int J Cardiol. 2014; 172: 230-232
        • Zomer A.C.
        • Vaartjes I.
        • Uiterwaal C.S.P.
        • et al.
        Social burden and lifestyle in adults with congenital heart disease.
        Am J Cardiol. 2012; 109: 1657-1663
        • Reid G.J.
        • Siu S.C.
        • McCrindle B.W.
        • Irvine M.J.
        • Webb G.D.
        Sexual behavior and reproductive concerns among adolescents and young adults with congenital heart disease.
        Int J Cardiol. 2008; 125: 332-338
        • Reid G.J.
        • Webb G.D.
        • McCrindle B.W.
        • Irvine M.J.
        • Siu S.C.
        Health behaviors among adolescents and young adults with congenital heart disease.
        Congenit Heart Dis. 2008; 3: 16-25
        • Khan M.
        • Monaghan M.
        • Klein N.
        • Ruiz G.
        • John A.S.
        Associations among depression symptoms with alcohol and smoking tobacco use in adult patients with congenital heart disease.
        Congenit Heart Dis. 2015; 10: E243-E249
        • Pujol J.
        • Vendrell P.
        • Jungue C.
        • Marti-Vilalta J.L.
        • Capdevila A.
        When does human brain development end? Evidence of corpus callosum growth up to adulthood.
        Ann Neurol. 1993; 34: 71-75
        • Utens E.M.
        • Bieman J.V.
        • Verhulst F.C.
        • et al.
        Psychopathology in young adults with congenital heart disease: follow-up results.
        Eur Heart J. 1998; 19: 647-651
        • Eide M.G.
        • Skjaerven R.
        • Irgens L.M.
        • Bjerkedal T.
        • Oyen N.
        Associations of birth defects with adult intellectual performance, disability and mortality: population-based cohort study.
        Pediatr Res. 2006; 59: 848-853
        • Brewster R.C.
        • King T.Z.
        • Burns T.G.
        • Drossner D.M.
        • Mahle W.T.
        White matter integrity dissociates verbal memory and auditory attention span in emerging adults with congenital heart disease.
        J Int Neuropsychol Soc. 2015; 21: 22-33
        • Chiavarino C.
        • Bianchino C.
        • Brach-Prever S.
        • et al.
        Theory of mind deficit in adult patients with congenital heart disease.
        J Health Psychol. 2015; 20: 1253-1262
        • Ilardi D.
        • Ono K.E.
        • McCartney R.
        • Book W.
        • Stringer A.Y.
        Neurocognitive functioning in adults with congenital heart disease.
        Congenit Heart Dis. 2017; 12: 166-173
        • Pike N.A.
        • Poulsen M.K.
        • Woo M.A.
        Validity of the Montreal Cognitive Assessment Screener in adolescents and young adults with and without congenital heart disease.
        Nurs Res. 2017; 66: 222-230
        • Brunmeier A.
        • Reis M.P.
        • Earing M.G.
        • et al.
        Identifying self-reported neurocognitive deficits in the adult with congenital heart disease using a simple screening tool.
        Congenit Heart Dis. 2018; 13: 728-773
        • Kasmi L.
        • Calderon J.
        • Montreuil M.
        • et al.
        Neurocognitive and psychological outcomes in adults with dextro-transposition of the great arteries corrected by the arterial switch operation.
        Ann Thorac Surg. 2018; 105: 830-836
        • Cohen S.
        • Earing M.G.
        Neurocognitive impairment and its long-term impact on adults with congenital heart disease.
        Prog Cardiovasc Dis. 2018; 61: 287-293
        • Farr S.L.
        • Matthew E.O.
        • Simeone R.M.
        • et al.
        Limitations, depressive symptoms, and quality of life among a population-based sample of young adults with congenital heart defects.
        Bir Defects Res A Clin Mol Teratol. 2016; 106: 580-586
        • Amianto F.
        • Bergui G.
        • Bellicanta A.
        • et al.
        Growing up with congenital heart disease: neurocognitive, psychopathological and quality of life outcomes.
        Panminerva Med. 2011; 53: 109-127
        • Van Rijen E.H.M.
        • Utens E.M.
        • Roos-Hesselink J.W.
        • et al.
        Psychosocial functioning of adults with congenital heart disease: a 20-30 year follow-up.
        Eur Soc Cardiol. 2002; 24: 673-683
        • Kovacs A.H.
        • Utens E.M.
        More than just the heart: transition and psychosocial issues in adult congenital heart disease.
        Cardiol Clin. 2015; 33: 625-634
        • Ferguson M.
        • Kovacs A.H.
        An integrated adult congenital heart disease psychology service.
        Congenit Heart Dis. 2016; 11: 444-451
        • Bagge C.N.
        • Henderson V.W.
        • Laursen H.B.
        • et al.
        Risk of dementia in adults with congenital heart disease: population-based cohort study.
        Circulation. 2018; 137: 1912-1920
        • Afilalo J.
        • Therrien J.
        • Pilote L.
        • et al.
        Geriatric congenital heart disease: burden of disease and predictors of mortality.
        J Am Coll Cardiol. 2011; 58: 1509-1515
        • Bouchardy J.
        • Therrien J.
        • Pilote L.
        • et al.
        Atrial arrhythmias in adults with congenital heart disease.
        Circulation. 2009; 120: 1679-1686
        • Lanz J.
        • Brophy J.M.
        • Therrien J.
        • et al.
        Stroke in adults with congenital heart disease: incidence, cumulative risk, and predictors.
        Circulation. 2015; 132: 2385-2394
        • Qui C.
        • Winblad B.
        • Marengoni A.
        • et al.
        Heart failure and risk of dementia and Alzheimer disease: a population-based cohort study.
        Arch Intern Med. 2006; 166: 1003-1008
        • Trojano L.
        • Antonelli Incalzi R.
        • Acanfora D.
        • et al.
        Cognitive impairment: a key feature of congestive heart failure in the elderly.
        J Neurol. 2003; 250: 1456-1463
        • Van De Bruaene A.
        • Hickey E.J.
        • Kovacs A.H.
        • et al.
        Phenotype, management and predictors of outcome in a large cohort of adult congenital heart disease patients with heart failure.
        Int J Cardiol. 2018; 1: 80-87
        • Kwok C.S.
        • Loke Y.K.
        • Hale R.
        • Potter J.F.
        • Myint P.K.
        Atrial fibrillation and incidence of dementia: a systematic review and meta-analysis.
        Neurol. 2011; 76: 914-922
        • Bauer U.M.M.
        • Korten M.A.
        • Diller G.P.
        • et al.
        Cardiovascular risk factors in adults with congenital heart defects – recognised but not treated? An analysis of the German National Register for Congenital heart Defects.
        Int J Cardiol. 2019; 277: 79-84
        • Bokma J.P.
        • Zegstroo I.
        • Kuijpers J.M.
        • et al.
        Factors associated with coronary artery disease and stroke in adults with congenital heart disease.
        Heart. 2018; 104: 574-580
        • Ross G.W.
        • Petrovich H.
        • White L.R.
        • et al.
        Characterization of risk factors for vascular dementia: the Honolulu-Asia aging study.
        Neurology. 1999; 53: 337-343
        • Silva R.M.
        • Miranda C.M.
        • Liu T.
        • Tse G.
        • Roever L.
        Atrial fibrillation and risk of dementia: epidemiology, mechanisms, and effect of anticoagulation.
        Front Neurosci. 2019; 13: 1-7
        • Norton S.
        • Matthews F.E.
        • Barnes D.E.
        • Yaffe K.
        • Brayne C.
        Potential for primary prevention of Alzheimer's disease: an analysis of population-based data.
        Lancet Neurol. 2014; 13: 788-794
        • Moons P.
        • Van Deyk K.
        • Dedroog D.
        • Troost E.
        • Budts W.
        Prevalence of cardiovascular risk factors in adults with congenital heart disease.
        Eur J Cardiovasc Prev Rehabil. 2006; 13: 612-616
        • Hait G.
        • Corpus M.
        • Lamarre F.R.
        • et al.
        Alteration of glucose and insulin metabolism in congenital heart disease.
        Circulation. 1972; 46: 333-346
        • de Bono J.
        • Freeman L.J.
        Aortic coarctation repair – lost and found: the role of local long term specialized care.
        Int J Cardiol. 2005; 104: 176-183
        • Pemberton V.L.
        • McCrindle B.W.
        • Barkin S.
        • et al.
        Report of the National Heart, Lung, and Blood Institute’s working group on obesity and other cardiovascular risk factors in congenital heart disease.
        Circulation. 2010; 121: 1153-1159
        • Pasquali S.K.
        • Marino B.S.
        • Pudusseri A.
        • et al.
        Risk factors and comorbidities associated with obesity in children and adolescents after the arterial switch operation and Ross procedure.
        Am Heart J. 2009; 158: 473-479
        • Deen J.F.
        • Krieger E.
        • Slee A.E.
        • et al.
        Metabolic syndrome in adults with congenital heart disease.
        J Am Heart Assoc. 2016; 5: 1-8
        • Jackson J.J.
        • Tierney K.
        • Daniels C.J.
        • Vannatta K.
        Disease knowledge, perceived risk, and health behavior engagement among adolescents and adults with congenital heart disease.
        Heart Lung. 2015; 44: 39-44
        • McCabe N.
        • Dunbar S.B.
        • Butler J.
        • et al.
        Antecedents of self-care in adults with congenital heart defects.
        Int J Cardiol. 2015; 201: 610-615
        • Nyberg J.
        • Aberg M.A.I.
        • Schioler L.
        • et al.
        Cardiovascular and cognitive fitness at age 18 and risk of early-onset dementia.
        Brain. 2014; 137: 1514-1523
        • Bhatt A.B.
        • Foster E.
        • Kuehl K.
        • et al.
        Congenital heart disease in the older adult; a scientific statement from the American Heart Association.
        Circulation. 2015; 131: 1-48
        • Dagres N.
        • Chao T.F.
        • Fenelon G.
        • et al.
        European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on arrhythmias and cognitive function: what is the best practice?.
        Europace. 2018; 20: 1399-1421
        • Fujihara S.
        • Brucki S.M.D.
        • Rocha M.S.G.
        • Carvalho A.A.
        • Piccolo A.C.
        Prevalence of presenile dementia in a tertiary outpatient clinic.
        Arq Neuropsiquiatr. 2004; 62: 592-595
        • Gauthier S.
        • Patterson C.
        • Chertkow H.
        • et al.
        Recommendations of the 4th Canadian Consensus Conference on the Diagnosis and Treatment of Dementia (CCCDTD4).
        Canadian Geriatr J. 2012; 15: 120-126