Advertisement
Canadian Journal of Cardiology

New Insights Into Mechanisms of Acute Kidney Injury in Heart Disease

      Abstract

      Acute kidney injury is a frequent occurrence in patients with heart disease, and is associated with higher risk of adverse outcomes, including mortality. In the setting of decompensated heart failure, acute kidney injury can occur from hemodynamic and neurohormonal activation, venous congestion, and nephrotoxic medications. Certain medications, such as loop diuretics, renin angiotensin system blockers, and mineralocorticoid antagonists can seemingly cause acute kidney injury. However, this increase in creatinine level is not always associated with adverse outcomes and should be carefully differentiated so as to allow deliberate continuation of these cardio- and nephroprotective agents. In other settings such as cardiac surgery, acute kidney injury can occur from factors related to the cardiopulmonary bypass, renal hypoperfusion, or other perioperative factors. Last, patients with heart disease commonly undergo imaging procedures that require contrast administration. Contrast can indeed cause acute kidney injury, but these interventional procedures also can result in kidney injury from atheroembolic phenomena. This is well documented by the recent data reporting a higher risk of acute kidney injury from femoral compared with radial access. The advent of biomarkers of kidney injury present an opportunity for early detection, accurate differential diagnosis, as well as potentially designing innovative biomarker-enriched adaptive clinical trials.

      Résumé

      L’insuffisance rénale aiguë survient fréquemment chez les patients atteints de maladies cardiaques et est associée à un risque accru d’issues défavorables, y compris le décès. Dans un contexte d’insuffisance cardiaque décompensée, l’insuffisance rénale aiguë peut se produire à la suite d’une activation hémodynamique et neurohormonale, d’une congestion veineuse et de la prise de médicaments néphrotoxiques. Certains médicaments, comme les diurétiques de l’anse, les inhibiteurs du système rénine-angiotensine et les antagonistes des récepteurs des minéralocorticoïdes peuvent vraisemblablement causer une insuffisance rénale aiguë. Cependant, l’augmentation du taux de créatinine n’est pas toujours associée à une issue défavorable et sa cause doit être soigneusement différenciée de façon à permettre la poursuite délibérée du traitement par ces agents cardio- et néphroprotecteurs. Dans d’autres contextes, en chirurgie cardiaque notamment, l’insuffisance rénale aiguë peut résulter de facteurs liés à la circulation extracorporelle ou à l’hypoperfusion rénale, ou d’autres facteurs périopératoires. Enfin, les patients atteints de maladies cardiaques subissent généralement des examens d’imagerie qui nécessitent l’administration de produits de contraste. Or, ces produits peuvent effectivement causer une insuffisance rénale aiguë, quoique les procédures interventionnelles puissent également entraîner une atteinte rénale par suite de phénomènes athéroemboliques. Ce fait est bien documenté par les données récentes indiquant un risque plus élevé d’insuffisance rénale aiguë lorsque la voie d’abord est fémorale plutôt que radiale. L’arrivée de biomarqueurs de l’insuffisance rénale ouvre la voie à un dépistage précoce, à un diagnostic différentiel précis ainsi qu’à la conception d’essais cliniques adaptatifs et novateurs mettant à profit le biomarquage.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Harlos J.
        • Heidland A.
        Hypertension as cause and consequence of renal disease in the 19th century.
        Am J Nephrol. 1994; 14: 436-442
        • Kellum J.A.
        • Lameire N.
        • Aspelin P.
        • et al.
        Section 2: AKI definition.
        Kidney Int Suppl. 2012; 2: 19-36
        • James M.T.
        • Levey A.S.
        • Tonelli M.
        • et al.
        Incidence and prognosis of acute kidney diseases and disorders using an integrated approach to laboratory measurements in a universal health care system.
        JAMA Netw Open. 2019; 2e191795
        • Rangaswami J.
        • Bhalla V.
        • Blair J.E.A.
        • et al.
        Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association.
        Circulation. 2019; 139: e840-e878
        • Ronco C.
        • Haapio M.
        • House A.A.
        • Anavekar N.
        • Bellomo R.
        Cardiorenal syndrome.
        J Am Coll Cardiol. 2008; 52: 1527-1539
        • House A.A.
        • Anand I.
        • Bellomo R.
        • et al.
        Definition and classification of Cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference.
        Nephrol Dial Transplant. 2010; 25: 1416-1420
        • Voors A.A.
        • Davison B.A.
        • Felker G.M.
        • et al.
        Early drop in systolic blood pressure and worsening renal function in acute heart failure: renal results of Pre-RELAX-AHF.
        Eur J Heart Fail. 2011; 13: 961-967
        • Forman D.E.
        • Butler J.
        • Wang Y.
        • et al.
        Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure.
        J Am Coll Cardiol. 2004; 43: 61-67
        • Coca S.G.
        • Zabetian A.
        • Ferket B.S.
        • et al.
        Evaluation of short-term changes in serum creatinine level as a meaningful end point in randomized clinical trials.
        J Am Soc Nephrol. 2016; 27: 2529-2542
        • Cushman W.C.
        • Evans G.W.
        • Byington R.P.
        • et al.
        Effects of intensive blood-pressure control in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1575-1585
        • Wright Jr., J.T.
        • Williamson J.D.
        • Whelton P.K.
        • et al.
        A randomized trial of intensive vs standard blood-pressure control.
        N Engl J Med. 2015; 373: 2103-2116
        • Malhotra R.
        • Craven T.
        • Ambrosius W.T.
        • et al.
        Effects of intensive blood pressure lowering on kidney tubule injury in CKD: a longitudinal subgroup analysis in SPRINT.
        Am J Kidney Dis. 2019; 73: 21-30
        • Nadkarni G.N.
        • Chauhan K.
        • Rao V.
        • et al.
        Effect of intensive blood pressure lowering on kidney tubule injury: findings from the ACCORD trial study participants.
        Am J Kidney Dis. 2019; 73: 31-38
        • Clark A.L.
        • Kalra P.R.
        • Petrie M.C.
        • et al.
        Change in renal function associated with drug treatment in heart failure: national guidance.
        Heart. 2019; 105: 904-910
        • Tecson K.M.
        • Erhardtsen E.
        • Eriksen P.M.
        • et al.
        Optimal cut points of plasma and urine neutrophil gelatinase-associated lipocalin for the prediction of acute kidney injury among critically ill adults: retrospective determination and clinical validation of a prospective multicentre study.
        BMJ Open. 2017; 7e016028
        • Bonventre J.V.
        Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more.
        Nephrol Dial Transplant. 2009; 24: 3265-3268
        • Bihorac A.
        • Chawla L.S.
        • Shaw A.D.
        • et al.
        Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication.
        Am J Respir Crit Care Med. 2014; 189: 932-939
        • Meersch M.
        • Schmidt C.
        • Van Aken H.
        • et al.
        Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery.
        PLoS One. 2014; 9e93460
        • Kerr K.F.
        • Roth J.
        • Zhu K.
        • et al.
        Evaluating biomarkers for prognostic enrichment of clinical trials.
        Clin Trials. 2017; 14: 629-638
        • Ljungman S.
        • Laragh J.H.
        • Cody R.J.
        Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function.
        Drugs. 1990; 39 ([discussion: 2-4]): 10-21
        • Henry J.P.
        • Gauer O.H.
        • Reeves J.L.
        Evidence of the atrial location of receptors influencing urine flow.
        Circ Res. 1956; 4: 85-90
        • Packer M.
        Neurohormonal interactions and adaptations in congestive heart failure.
        Circulation. 1988; 77: 721-730
        • Sarraf M.
        • Masoumi A.
        • Schrier R.W.
        Cardiorenal syndrome in acute decompensated heart failure.
        Clin J Am Soc Nephrol. 2009; 4: 2013-2026
        • Schrier R.W.
        Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor?.
        J Am Coll Cardiol. 2006; 47: 1-8
        • Schrier R.W.
        • Abraham W.T.
        Hormones and hemodynamics in heart failure.
        N Engl J Med. 1999; 341: 577-585
        • Kramer R.S.
        • Mason D.T.
        • Braunwald E.
        Augmented sympathetic neurotransmitter activity in the peripheral vascular bed of patients with congestive heart failure and cardiac norepinephrine depletion.
        Circulation. 1968; 38: 629-634
        • Firth J.D.
        • Raine A.E.
        • Ledingham J.G.
        Raised venous pressure: a direct cause of renal sodium retention in oedema?.
        Lancet. 1988; 1: 1033-1035
        • Burnett Jr., J.C.
        • Haas J.A.
        • Knox F.G.
        Segmental analysis of sodium reabsorption during renal vein constriction.
        Am J Physiol. 1982; 243: F19-F22
        • Nohria A.
        • Hasselblad V.
        • Stebbins A.
        • et al.
        Cardiorenal interactions: insights from the ESCAPE trial.
        J Am Coll Cardiol. 2008; 51: 1268-1274
        • Damman K.
        • van Deursen V.M.
        • Navis G.
        • et al.
        Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease.
        J Am Coll Cardiol. 2009; 53: 582-588
        • De Waele J.J.
        • De Laet I.
        • Kirkpatrick A.W.
        • Hoste E.
        Intra-abdominal hypertension and abdominal compartment syndrome.
        Am J Kidney Dis. 2011; 57: 159-169
        • Mullens W.
        • Abrahams Z.
        • Skouri H.N.
        • et al.
        Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function?.
        J Am Coll Cardiol. 2008; 51: 300-306
        • Gambardella I.
        • Gaudino M.
        • Ronco C.
        • et al.
        Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury.
        Interact Cardiovasc Thorac Surg. 2016; 23: 800-805
        • Agostoni P.
        • Marenzi G.
        • Lauri G.
        • et al.
        Sustained improvement in functional capacity after removal of body fluid with isolated ultrafiltration in chronic cardiac insufficiency: failure of furosemide to provide the same result.
        Am J Med. 1994; 96: 191-199
        • Bart B.A.
        • Goldsmith S.R.
        • Lee K.L.
        • et al.
        Ultrafiltration in decompensated heart failure with cardiorenal syndrome.
        N Engl J Med. 2012; 367: 2296-2304
        • Metra M.
        • Davison B.
        • Bettari L.
        • et al.
        Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function.
        Circ Heart Fail. 2012; 5: 54-62
        • Vardeny O.
        • Wu D.H.
        • Desai A.
        • et al.
        Influence of baseline and worsening renal function on efficacy of spironolactone in patients with severe heart failure: insights from RALES (Randomized Aldactone Evaluation Study).
        J Am Coll Cardiol. 2012; 60: 2082-2089
        • Damman K.
        • Ng Kam Chuen M.J.
        • MacFadyen R.J.
        • et al.
        Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function.
        J Am Coll Cardiol. 2011; 57: 2233-2241
        • Tomson C.
        • Tomlinson L.A.
        Stopping RAS inhibitors to minimize AKI: more harm than good?.
        Clin J Am Soc Nephrol. 2019; 14: 617-619
        • Whiting P.
        • Morden A.
        • Tomlinson L.A.
        • et al.
        What are the risks and benefits of temporarily discontinuing medications to prevent acute kidney injury? A systematic review and meta-analysis.
        BMJ Open. 2017; 7e012674
        • Testani J.M.
        • Kimmel S.E.
        • Dries D.L.
        • Coca S.G.
        Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction.
        Circ Heart Fail. 2011; 4: 685-691
        • Brar S.
        • Ye F.
        • James M.T.
        • et al.
        Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with outcomes after acute kidney injury.
        JAMA Intern Med. 2018; 178: 1681-1690
        • Perkovic V.
        • Jardine M.J.
        • Neal B.
        • et al.
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N Engl J Med. 2019; 380: 2295-2306
        • Wiviott S.D.
        • Raz I.
        • Bonaca M.P.
        • et al.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Coca S.G.
        Acute Elevations in Serum Creatinine: Implications are Context Dependent.
        (Available at:) (Accessed August 6, 2019)
        • McMurray J.J.
        • Packer M.
        • Desai A.S.
        • et al.
        Angiotensin-neprilysin inhibition vs enalapril in heart failure.
        N Engl J Med. 2014; 371: 993-1004
        • Packer M.
        • Claggett B.
        • Lefkowitz M.P.
        • et al.
        Effect of neprilysin inhibition on renal function in patients with type 2 diabetes and chronic heart failure who are receiving target doses of inhibitors of the renin-angiotensin system: a secondary analysis of the PARADIGM-HF trial.
        Lancet Diabetes Endocrinol. 2018; 6: 547-554
        • Haynes R.
        • Judge P.K.
        • Staplin N.
        • et al.
        Effects of sacubitril/valsartan vs irbesartan in patients with chronic kidney disease.
        Circulation. 2018; 138: 1505-1514
        • Xiao D.
        • Dasgupta C.
        • Chen M.
        • et al.
        Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats.
        Cardiovasc Res. 2014; 101: 373-382
        • Kaneda R.
        • Takada S.
        • Yamashita Y.
        • et al.
        Genome-wide histone methylation profile for heart failure.
        Genes Cells. 2009; 14: 69-77
        • Movassagh M.
        • Choy M.K.
        • Knowles D.A.
        • et al.
        Distinct epigenomic features in end-stage failing human hearts.
        Circulation. 2011; 124: 2411-2422
        • Marumo T.
        • Hishikawa K.
        • Yoshikawa M.
        • Fujita T.
        Epigenetic regulation of BMP7 in the regenerative response to ischemia.
        J Am Soc Nephrol. 2008; 19: 1311-1320
        • Aalto A.P.
        • Pasquinelli A.E.
        Small non-coding RNAs mount a silent revolution in gene expression.
        Curr Opin Cell Biol. 2012; 24: 333-340
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Maddox I.S.
        A radiolabeled assay for aldose reductase.
        Can J Biochem. 1974; 52: 807-809
        • Bove T.
        • Monaco F.
        • Covello R.D.
        • Zangrillo A.
        Acute renal failure and cardiac surgery.
        HSR Proc Intensive Care Cardiovasc Anesth. 2009; 1: 13-21
        • Hobson C.E.
        • Yavas S.
        • Segal M.S.
        • et al.
        Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery.
        Circulation. 2009; 119: 2444-2453
        • Tecson K.M.
        • Brown D.
        • Choi J.W.
        • et al.
        Major adverse renal and cardiac events after coronary angiography and cardiac surgery.
        Ann Thorac Surg. 2018; 105: 1724-1730
        • Grayson A.D.
        • Khater M.
        • Jackson M.
        • Fox M.A.
        Valvular heart operation is an independent risk factor for acute renal failure.
        Ann Thorac Surg. 2003; 75: 1829-1835
        • Kanji H.D.
        • Schulze C.J.
        • Hervas-Malo M.
        • et al.
        Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury.
        J Cardiothorac Surg. 2010; 5: 71
        • Bellini M.I.
        • Charalampidis S.
        • Herbert P.E.
        • et al.
        Cold pulsatile machine perfusion vs static cold storage in kidney transplantation: a single centre experience.
        Biomed Res Int. 2019; 2019: 7435248
        • Baraki H.
        • Gohrbandt B.
        • Del Bagno B.
        • et al.
        Does pulsatile perfusion improve outcome after cardiac surgery? A propensity-matched analysis of 1959 patients.
        Perfusion. 2012; 27: 166-174
        • Presta P.
        • Onorati F.
        • Fuiano L.
        • et al.
        Can pulsatile cardiopulmonary bypass prevent perioperative renal dysfunction during myocardial revascularization in elderly patients?.
        Nephron Clin Pract. 2009; 111: c229-c235
        • Chen Q.H.
        • Wang H.L.
        • Liu L.
        • et al.
        Effects of restrictive red blood cell transfusion on the prognoses of adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials.
        Crit Care. 2018; 22: 142
        • Garg A.X.
        • Shehata N.
        • McGuinness S.
        • et al.
        Risk of acute kidney injury in patients randomized to a restrictive vs liberal approach to red blood cell transfusion in cardiac surgery: a substudy protocol of the Transfusion Requirements in Cardiac Surgery III Noninferiority Trial.
        Can J Kidney Health Dis. 2018; 5 (2054358117749532)
        • Niemann C.U.
        • Feiner J.
        • Swain S.
        • et al.
        Therapeutic hypothermia in deceased organ donors and kidney-graft function.
        N Engl J Med. 2015; 373: 405-414
        • Nussmeier N.A.
        • Cheng W.
        • Marino M.
        • et al.
        Temperature during cardiopulmonary bypass: the discrepancies between monitored sites.
        Anesth Analg. 2006; 103: 1373-1379
        • Boodhwani M.
        • Rubens F.D.
        • Wozny D.
        • Nathan H.J.
        Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting.
        Ann Thorac Surg. 2009; 87: 489-495
        • Paller M.S.
        Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity.
        Am J Physiol. 1988; 255: F539-F544
        • Schaer D.J.
        • Buehler P.W.
        • Alayash A.I.
        • Belcher J.D.
        • Vercellotti G.M.
        Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins.
        Blood. 2013; 121: 1276-1284
        • Billings F.T.
        • Yu C.
        • Byrne J.G.
        • Petracek M.R.
        • Pretorius M.
        Heme oxygenase-1 and acute kidney injury following cardiac surgery.
        Cardiorenal Med. 2014; 4: 12-21
        • Vercaemst L.
        Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm.
        J Extra Corpor Technol. 2008; 40: 257-267
        • Doty J.R.
        • Wilentz R.E.
        • Salazar J.D.
        • Hruban R.H.
        • Cameron D.E.
        Atheroembolism in cardiac surgery.
        Ann Thorac Surg. 2003; 75: 1221-1226
        • Sreeram G.M.
        • Grocott H.P.
        • White W.D.
        • Newman M.F.
        • Stafford-Smith M.
        Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery.
        J Cardiothorac Vasc Anesth. 2004; 18: 548-551
        • Zhang W.R.
        • Garg A.X.
        • Coca S.G.
        • et al.
        Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery.
        J Am Soc Nephrol. 2015; 26: 3123-3132
        • Baliga R.
        • Ueda N.
        • Walker P.D.
        • Shah S.V.
        Oxidant mechanisms in toxic acute renal failure.
        Drug Metab Rev. 1999; 31: 971-997
        • Dhalla N.S.
        • Elmoselhi A.B.
        • Hata T.
        • Makino N.
        Status of myocardial antioxidants in ischemia-reperfusion injury.
        Cardiovasc Res. 2000; 47: 446-456
        • Garg A.X.
        • Devereaux P.J.
        • Yusuf S.
        • et al.
        Kidney function after off-pump or on-pump coronary artery bypass graft surgery: a randomized clinical trial.
        JAMA. 2014; 311: 2191-2198
        • Shroyer A.L.
        • Grover F.L.
        • Hattler B.
        • et al.
        On-pump vs off-pump coronary-artery bypass surgery.
        N Engl J Med. 2009; 361: 1827-1837
        • Smith C.R.
        • Leon M.B.
        • Mack M.J.
        • et al.
        Transcatheter vs surgical aortic-valve replacement in high-risk patients.
        N Engl J Med. 2011; 364: 2187-2198
        • Farkas J.
        • Internet Book of Critical Care
        Contrast Nephropathy, Myth Thereof.
        (Available at:) (Accessed August 6, 2019)
        • Hinson J.S.
        • Ehmann M.R.
        • Fine D.M.
        • et al.
        Risk of acute kidney injury after intravenous contrast media administration.
        Ann Emerg Med. 2017; 69: 577-586.e4
        • McDonald J.S.
        • McDonald R.J.
        • Carter R.E.
        • et al.
        Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate.
        Radiology. 2014; 271: 65-73
        • Heyman S.N.
        • Brezis M.
        • Epstein F.H.
        • et al.
        Early renal medullary hypoxic injury from radiocontrast and indomethacin.
        Kidney Int. 1991; 40: 632-642
        • Almen T.
        • Bergqvist D.
        • Cederholm C.
        • et al.
        Interactive effects on renal function between renal ischemia and intravascular contrast media.
        Invest Radiol. 1988; 23: S161-S163
        • Persson P.B.
        • Hansell P.
        • Liss P.
        Pathophysiology of contrast medium-induced nephropathy.
        Kidney Int. 2005; 68: 14-22
        • Lau A.
        • Chung H.
        • Komada T.
        • et al.
        Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury.
        J Clin Invest. 2018; 128: 2894-2913
        • Wilhelm-Leen E.
        • Montez-Rath M.E.
        • Chertow G.
        Estimating the risk of radiocontrast-associated nephropathy.
        J Am Soc Nephrol. 2017; 28: 653-659
        • Stratta P.
        • Bozzola C.
        • Quaglia M.
        Pitfall in nephrology: contrast nephropathy has to be differentiated from renal damage due to atheroembolic disease.
        J Nephrol. 2012; 25: 282-289
        • Ando G.
        • Cortese B.
        • Russo F.
        • et al.
        Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management: AKIMATRIX.
        J Am Coll Cardiol. 2017; 69: 2592-2603
        • Ando G.
        • Gragnano F.
        • Calabro P.
        • Valgimigli M.
        Radial vs femoral access for the prevention of acute kidney injury (AKI) after coronary angiography or intervention: A systematic review and meta-analysis.
        Catheter Cardiovasc Interv. 2018; 92: E518-E526
        • Rothenbuhler M.
        • Valgimigli M.
        • Odutayo A.
        • et al.
        Association of acute kidney injury and bleeding events with mortality after radial or femoral access in patients with acute coronary syndrome undergoing invasive management: secondary analysis of a randomized clinical trial.
        Eur Heart J. 2019; 40: 1226-1232
        • van Rosendael P.J.
        • Kamperidis V.
        • van der Kley F.
        • et al.
        Atherosclerosis burden of the aortic valve and aorta and risk of acute kidney injury after transcatheter aortic valve implantation.
        J Cardiovasc Comput Tomogr. 2015; 9: 129-138
        • Shishikura D.
        • Kataoka Y.
        • Pisaniello A.D.
        • et al.
        The extent of aortic atherosclerosis predicts the occurrence, severity, and recovery of acute kidney injury after transcatheter aortic valve replacement.
        Circ Cardiovasc Interv. 2018; 11: e006367
        • Devireddy C.
        • Hiremath S.
        Acute kidney injury after transcatheter aortic valve replacement.
        Circ Cardiovasc Interv. 2018; 11: e007135
        • Mehran R.
        • Aymong E.D.
        • Nikolsky E.
        • et al.
        A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation.
        J Am Coll Cardiol. 2004; 44: 1393-1399