Advertisement
Canadian Journal of Cardiology

Why Do Patients With Well-Controlled Vascular Risk Factors Develop Progressive Chronic Kidney Disease?

  • Sofia B. Ahmed
    Correspondence
    Corresponding author: Dr Sofia B. Ahmed, 3230 Hospital Drive NW, Rm 2AC70, Calgary, Alberta T2N 4Z6, Canada. Tel.: +1-403-220-2550; fax: +1-403-210-6660.
    Affiliations
    Department of Medicine, Cumming School of Medicine, and Libin Cardiovascular Institute of Alberta, University of Calgary, and Alberta Kidney Disease Network, Calgary, Alberta, Canada
    Search for articles by this author
  • Sandra M. Dumanski
    Affiliations
    Department of Medicine, Cumming School of Medicine, and Libin Cardiovascular Institute of Alberta, University of Calgary, and Alberta Kidney Disease Network, Calgary, Alberta, Canada
    Search for articles by this author

      Abstract

      Cardiovascular disease and chronic kidney disease (CKD) share several common risk factors, and CKD itself is an independent and graded risk factor for cardiovascular disease. Although control of vascular risk factors is associated with improved kidney outcomes, certain patients still show CKD progression, highlighting that examination of other factors is warranted. In this review we explore how blood pressure and glycemic targets appear to differ for macro- vs microvascular disease. Furthermore, factors such as obstructive sleep apnea and obesity are associated with CKD progression. There is increasing recognition of how sex, gender, ethnicity, and socioeconomic position all factor into CKD progression. Uncertainty exists as to what is the optimal diet to prevent loss of kidney function. Last, complications of CKD might directly or indirectly contribute to progression of kidney disease. In conclusion, control of vascular risk factors reduces the risk of CKD progression, and careful consideration of these additional factors might ultimately result in improved cardiovascular and CKD outcomes.

      Résumé

      La maladie cardiovasculaire et la néphropathie chronique ont en commun plusieurs facteurs de risque. La néphropathie chronique est en soi un facteur de risque indépendant et progressif de maladie cardiovasculaire. Bien que la maîtrise des facteurs de risque vasculaire soit associée à une amélioration des paramètres rénaux, certains patients présentent quand même une évolution de la néphropathie chronique mettant en évidence la nécessité d’évaluer d’autres facteurs. Dans cette étude, nous examinons comment les valeurs cibles de la pression artérielle et de la glycémie semblent différer si l’atteinte est microvasculaire ou macrovasculaire. De plus, les facteurs comme l’apnée obstructive du sommeil et l’obésité sont liés à l’évolution de la néphropathie chronique. On reconnaît de plus en plus le rôle du sexe, du genre, de l’origine ethnique et du statut socio-économique dans l’évolution de la néphropathie chronique. L’incertitude plane quant à la diète optimale pour prévenir la détérioration de la fonction rénale. Finalement, les complications de la néphropathie chronique pourraient contribuer directement ou indirectement à l’évolution de la néphropathie. En conclusion, la maîtrise des facteurs de risque vasculaire réduit le risque d’évolution de la néphropathie chronique et la prise en considération rigoureuse de ces facteurs additionnels pourrait en fin de compte se traduire par une amélioration des issues au regard de la maladie cardiovasculaire et de la néphropathie chronique.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arora P.
        • Vasa P.
        • Brenner D.
        • et al.
        Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey.
        CMAJ. 2013; 185: E417-E423
      1. The global issue of kidney disease.
        Lancet. 2013; 382: 101
        • Webster A.C.
        • Nagler E.V.
        • Morton R.L.
        • Masson P.
        Chronic kidney disease.
        Lancet. 2017; 389: 1238-1252
        • Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group
        KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.
        Kidney Int. 2013; 3: 1-150
        • Levey A.S.
        • Becker C.
        • Inker L.A.
        Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review.
        JAMA. 2015; 313: 837-846
        • Akbari A.
        • Clase C.M.
        • Acott P.
        • et al.
        Canadian Society of Nephrology commentary on the KDIGO clinical practice guideline for CKD evaluation and management.
        Am J Kidney Dis. 2015; 65: 177-205
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305
        • Turin T.C.
        • Jun M.
        • James M.T.
        • et al.
        Magnitude of rate of change in kidney function and future risk of cardiovascular events.
        Int J Cardiol. 2016; 202: 657-665
        • Fauchier L.
        • Bisson A.
        • Clementy N.
        • et al.
        Changes in glomerular filtration rate and outcomes in patients with atrial fibrillation.
        Am Heart J. 2018; 198: 39-45
        • Barzilay J.I.
        • Davis B.R.
        • Pressel S.L.
        • et al.
        The effects of eGFR change on CVD, renal, and mortality outcomes in a hypertensive cohort treated with 3 different antihypertensive medications.
        Am J Hypertens. 2018; 31: 609-614
        • Barzilay J.I.
        • Davis B.R.
        • Ghosh A.
        • et al.
        Rapid eGFR change as a determinant of cardiovascular and renal disease outcomes and of mortality in hypertensive adults with and without type 2 diabetes.
        J Diabetes Complications. 2018; 32: 830-832
        • Hommos M.S.
        • Glassock R.J.
        • Rule A.D.
        Structural and functional changes in human kidneys with healthy aging.
        J Am Soc Nephrol. 2017; 28: 2838-2844
        • Wang X.
        • Vrtiska T.J.
        • Avula R.T.
        • et al.
        Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney.
        Kidney Int. 2014; 85: 677-685
        • Roseman D.A.
        • Hwang S.J.
        • Oyama-Manabe N.
        • et al.
        Clinical associations of total kidney volume: the Framingham Heart Study.
        Nephrol Dial Transplant. 2017; 32: 1344-1350
        • Hughson M.D.
        • Puelles V.G.
        • Hoy W.E.
        • et al.
        Hypertension, glomerular hypertrophy and nephrosclerosis: the effect of race.
        Nephrol Dial Transplant. 2014; 29: 1399-1409
        • Kremers W.K.
        • Denic A.
        • Lieske J.C.
        • et al.
        Distinguishing age-related from disease-related glomerulosclerosis on kidney biopsy: the Aging Kidney Anatomy study.
        Nephrol Dial Transplant. 2015; 30: 2034-2039
        • Denic A.
        • Lieske J.C.
        • Chakkera H.A.
        • et al.
        The substantial loss of nephrons in healthy human kidneys with aging.
        J Am Soc Nephrol. 2017; 28: 313-320
        • Luyckx V.A.
        • Perico N.
        • Somaschini M.
        • et al.
        A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group.
        Lancet. 2017; 390: 424-428
        • Luyckx V.A.
        Preterm birth and its impact on renal health.
        Semin Nephrol. 2017; 37: 311-319
        • Denic A.
        • Mathew J.
        • Lerman L.O.
        • et al.
        Single-nephron glomerular filtration rate in healthy adults.
        N Engl J Med. 2017; 376: 2349-2357
        • Denic A.
        • Alexander M.P.
        • Kaushik V.
        • et al.
        Detection and clinical patterns of nephron hypertrophy and nephrosclerosis among apparently healthy adults.
        Am J Kidney Dis. 2016; 68: 58-67
        • Xie X.
        • Atkins E.
        • Lv J.
        • et al.
        Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis.
        Lancet. 2016; 387: 435-443
        • Brunstrom M.
        • Carlberg B.
        Lower blood pressure targets: to whom do they apply?.
        Lancet. 2016; 387: 405-406
        • Ku E.
        • Lee B.J.
        • Wei J.
        • Weir M.R.
        Hypertension in CKD: core curriculum 2019.
        Am J Kidney Dis. 2019; 74: 120-131
        • Strippoli G.F.
        • Craig J.C.
        • Manno C.
        • Schena F.P.
        Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials.
        J Am Soc Nephrol. 2004; 15: 3154-3165
        • Zhang Y.
        • Zhang D.Z.
        Circulating parathyroid hormone and risk of hypertension: a meta-analysis.
        Clin Chim Acta. 2018; 482: 40-45
        • Agarwal R.
        • Andersen M.J.
        Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease.
        Kidney Int. 2006; 69: 1175-1180
        • Banegas J.R.
        • Ruilope L.M.
        • de la Sierra A.
        • et al.
        Relationship between clinic and ambulatory blood-pressure measurements and mortality.
        N Engl J Med. 2018; 378: 1509-1520
        • Burnier M.
        • Wuerzner G.
        Drug adherence monitoring in clinical trials: a necessity for a correct assessment of the efficacy and safety of antihypertensive therapies.
        J Hypertens. 2015; 33: 2395-2398
        • Burnier M.
        • Pruijm M.
        • Wuerzner G.
        • Santschi V.
        Drug adherence in chronic kidney diseases and dialysis.
        Nephrol Dial Transplant. 2015; 30: 39-44
        • Nerenberg K.A.
        • Zarnke K.B.
        • Leung A.A.
        • et al.
        Hypertension Canada’s 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children.
        Can J Cardiol. 2018; 34: 506-525
        • Group S.R.
        • Wright Jr., J.T.
        • Williamson J.D.
        • et al.
        A randomized trial of intensive vs standard blood-pressure control.
        N Engl J Med. 2015; 373: 2103-2116
        • Rocco M.V.
        • Sink K.M.
        • Lovato L.C.
        • et al.
        Effects of intensive blood pressure treatment on acute kidney injury events in the Systolic Blood Pressure Intervention Trial (SPRINT).
        Am J Kidney Dis. 2018; 71: 352-361
        • Roehm B.
        • Weiner D.E.
        Blood pressure targets and kidney and cardiovascular disease: same data but discordant guidelines.
        Curr Opin Nephrol Hypertens. 2019; 28: 245-250
        • Tobe S.W.
        • Gilbert R.E.
        • et al.
        • Diabetes Canada Clinical Practice Guidelines Expert Committee
        Treatment of hypertension.
        Can J Diabetes. 2018; 42: S186-S189
        • Voyaki S.M.
        • Staessen J.A.
        • Thijs L.
        • et al.
        Follow-up of renal function in treated and untreated older patients with isolated systolic hypertension. Systolic Hypertension in Europe (Syst-Eur) Trial Investigators.
        J Hypertens. 2001; 19: 511-519
      2. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group [erratum in: 1999;318:29].
        BMJ. 1998; 317: 703-713
        • Schrier R.W.
        • Estacio R.O.
        • Esler A.
        • Mehler P.
        Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes.
        Kidney Int. 2002; 61: 1086-1097
        • Lewis J.B.
        • Berl T.
        • Bain R.P.
        • Rohde R.D.
        • Lewis E.J.
        Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy. Collaborative Study Group.
        Am J Kidney Dis. 1999; 34: 809-817
        • Group A.S.
        • Cushman W.C.
        • Evans G.W.
        • et al.
        Effects of intensive blood-pressure control in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1575-1585
        • Chang A.R.
        • Loser M.
        • Malhotra R.
        • Appel L.J.
        Blood pressure goals in patients with CKD: a review of evidence and guidelines.
        Clin J Am Soc Nephrol. 2019; 14: 161-169
        • Groop P.H.
        • Thomas M.C.
        • Moran J.L.
        • et al.
        The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes.
        Diabetes. 2009; 58: 1651-1658
        • Orchard T.J.
        • Secrest A.M.
        • Miller R.G.
        • Costacou T.
        In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study.
        Diabetologia. 2010; 53: 2312-2319
        • Afkarian M.
        • Sachs M.C.
        • Kestenbaum B.
        • et al.
        Kidney disease and increased mortality risk in type 2 diabetes.
        J Am Soc Nephrol. 2013; 24: 302-308
        • Thomas B.
        The global burden of diabetic kidney disease: time trends and gender gaps.
        Curr Diab Rep. 2019; 19: 18
        • Oellgaard J.
        • Gaede P.
        • Rossing P.
        • et al.
        Intensified multifactorial intervention in type 2 diabetics with microalbuminuria leads to long-term renal benefits.
        Kidney Int. 2017; 91: 982-988
        • Alicic R.Z.
        • Rooney M.T.
        • Tuttle K.R.
        Diabetic kidney disease: challenges, progress, and possibilities.
        Clin J Am Soc Nephrol. 2017; 12: 2032-2045
        • Group D.E.R.
        • de Boer I.H.
        • Sun W.
        • et al.
        Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes.
        N Engl J Med. 2011; 365: 2366-2376
        • Zoungas S.
        • Arima H.
        • Gerstein H.C.
        • et al.
        Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials.
        Lancet Diabetes Endocrinol. 2017; 5: 431-437
        • Nathan D.M.
        • Genuth S.
        • et al.
        • Diabetes Control and Complications Trial Research Group
        The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.
        N Engl J Med. 1993; 329: 977-986
      3. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [erratum in: 1999;354:602].
        Lancet. 1998; 352: 837-853
        • Shichiri M.
        • Kishikawa H.
        • Ohkubo Y.
        • Wake N.
        Long-term results of the Kumamoto study on optimal diabetes control in type 2 diabetic patients.
        Diabetes Care. 2000; 23: B21-B29
        • Duckworth W.
        • Abraira C.
        • Moritz T.
        • et al.
        Glucose control and vascular complications in veterans with type 2 diabetes.
        N Engl J Med. 2009; 360: 129-139
        • Ismail-Beigi F.
        • Craven T.
        • Banerji M.A.
        • et al.
        Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial.
        Lancet. 2010; 376: 419-430
        • Gerstein H.C.
        • Miller M.E.
        • et al.
        • Action to Control Cardiovascular Risk in Diabetes Study Group
        Effects of intensive glucose lowering in type 2 diabetes.
        N Engl J Med. 2008; 358: 2545-2559
        • Patel A.
        • MacMahon S.
        • et al.
        • ADVANCE Collaborative Group
        Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2008; 358: 2560-2572
        • Papademetriou V.
        • Lovato L.
        • Doumas M.
        • et al.
        Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes.
        Kidney Int. 2015; 87: 649-659
        • Yun J.S.
        • Ko S.H.
        • Ko S.H.
        • et al.
        Presence of macroalbuminuria predicts severe hypoglycemia in patients with type 2 diabetes: a 10-year follow-up study.
        Diabetes Care. 2013; 36: 1283-1289
        • Moen M.F.
        • Zhan M.
        • Hsu V.D.
        • et al.
        Frequency of hypoglycemia and its significance in chronic kidney disease.
        Clin J Am Soc Nephrol. 2009; 4: 1121-1127
        • Alsahli M.
        • Gerich J.E.
        Hypoglycemia, chronic kidney disease, and diabetes mellitus.
        Mayo Clin Proc. 2014; 89: 1564-1571
        • Ng J.M.
        • Cooke M.
        • Bhandari S.
        • Atkin S.L.
        • Kilpatrick E.S.
        The effect of iron and erythropoietin treatment on the A1C of patients with diabetes and chronic kidney disease.
        Diabetes Care. 2010; 33: 2310-2313
        • Diabetes Canada Clinical Practice Guidelines Expert Committee
        Diabetes Canada 2018 clinical practice guidelines for the prevention and management of diabetes in Canada.
        Can J Diabetes. 2018; 42: S1-S325
        • Ruospo M.
        • Saglimbene V.M.
        • Palmer S.C.
        • et al.
        Glucose targets for preventing diabetic kidney disease and its progression.
        Cochrane Database Syst Rev. 2017; 6: CD010137
        • Neumiller J.J.
        • Alicic R.Z.
        • Tuttle K.R.
        Therapeutic considerations for antihyperglycemic agents in diabetic kidney disease.
        J Am Soc Nephrol. 2017; 28: 2263-2274
        • Lo C.
        • Toyama T.
        • Wang Y.
        • et al.
        Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease.
        Cochrane Database Syst Rev. 2018; 9: CD011798
        • Wanner C.
        • Inzucchi S.E.
        • Zinman B.
        Empagliflozin and progression of kidney disease in type 2 diabetes.
        N Engl J Med. 2016; 375: 1801-1802
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • et al.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Perkovic V.
        • Jardine M.J.
        • Neal B.
        • et al.
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N Engl J Med. 2019; 380: 2295-2306
        • Marso S.P.
        • Daniels G.H.
        • Brown-Frandsen K.
        • et al.
        Liraglutide and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2016; 375: 311-322
        • Lewis E.J.
        • Hunsicker L.G.
        • Bain R.P.
        • Rohde R.D.
        The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group.
        N Engl J Med. 1993; 329: 1456-1462
        • Brenner B.M.
        • Cooper M.E.
        • de Zeeuw D.
        • et al.
        Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy.
        N Engl J Med. 2001; 345: 861-869
        • Parving H.H.
        • Lehnert H.
        • Brochner-Mortensen J.
        • et al.
        The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes.
        N Engl J Med. 2001; 345: 870-878
        • Feng Y.
        • Huang R.
        • Kavanagh J.
        • et al.
        Efficacy and safety of dual blockade of the renin-angiotensin-aldosterone system in diabetic kidney disease: a meta-analysis.
        Am J Cardiovasc Drugs. 2019; 19: 259-286
        • Whaley-Connell A.
        • Sowers J.R.
        Obesity and kidney disease: from population to basic science and the search for new therapeutic targets.
        Kidney Int. 2017; 92: 313-323
        • Navaneethan S.D.
        Trials and tribulations in studying kidney outcomes with intentional weight loss.
        Circulation. 2019; 139: 376-379
        • Ahmed S.B.
        • Fisher N.D.
        • Stevanovic R.
        • Hollenberg N.K.
        Body mass index and angiotensin-dependent control of the renal circulation in healthy humans.
        Hypertension. 2005; 46: 1316-1320
        • Look AHEAD Research Group
        Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial.
        Lancet Diabetes Endocrinol. 2014; 2: 801-809
        • Imam T.H.
        • Fischer H.
        • Jing B.
        • et al.
        Estimated GFR before and after bariatric surgery in CKD.
        Am J Kidney Dis. 2017; 69: 380-388
        • Clerte M.
        • Wagner S.
        • Carette C.
        • et al.
        The measured glomerular filtration rate (mGFR) before and 6 months after bariatric surgery: a pilot study.
        Nephrol Ther. 2017; 13: 160-167
        • Carrero J.J.
        • Hecking M.
        • Chesnaye N.C.
        • Jager K.J.
        Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease.
        Nat Rev Nephrol. 2018; 14: 151-164
        • Glassock R.
        • Delanaye P.
        • El Nahas M.
        An age-calibrated classification of chronic kidney disease.
        JAMA. 2015; 314: 559-560
        • O’Hare A.M.
        • Choi A.I.
        • Bertenthal D.
        • et al.
        Age affects outcomes in chronic kidney disease.
        J Am Soc Nephrol. 2007; 18: 2758-2765
        • Inker L.A.
        • Shafi T.
        • Okparavero A.
        • et al.
        Effects of race and sex on measured GFR: the Multi-Ethnic Study of Atherosclerosis.
        Am J Kidney Dis. 2016; 68: 743-751
        • Inker L.A.
        • Levey A.S.
        • Tighiouart H.
        • et al.
        Performance of glomerular filtration rate estimating equations in a community-based sample of blacks and whites: the multiethnic study of atherosclerosis.
        Nephrol Dial Transplant. 2018; 33: 417-425
        • Eriksen B.O.
        • Ingebretsen O.C.
        The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age.
        Kidney Int. 2006; 69: 375-382
        • Evans M.
        • Fryzek J.P.
        • Elinder C.G.
        • et al.
        The natural history of chronic renal failure: results from an unselected, population-based, inception cohort in Sweden.
        Am J Kidney Dis. 2005; 46: 863-870
        • Halbesma N.
        • Brantsma A.H.
        • Bakker S.J.
        • et al.
        Gender differences in predictors of the decline of renal function in the general population.
        Kidney Int. 2008; 74: 505-512
        • Vikse B.E.
        • Irgens L.M.
        • Leivestad T.
        • Skjaerven R.
        • Iversen B.M.
        Preeclampsia and the risk of end-stage renal disease.
        N Engl J Med. 2008; 359: 800-809
        • Ahmed S.B.
        • Hovind P.
        • Parving H.H.
        • et al.
        Oral contraceptives, angiotensin-dependent renal vasoconstriction, and risk of diabetic nephropathy.
        Diabetes Care. 2005; 28: 1988-1994
        • Ahmed S.B.
        • Culleton B.F.
        • Tonelli M.
        • et al.
        Oral estrogen therapy in postmenopausal women is associated with loss of kidney function.
        Kidney Int. 2008; 74: 370-376
        • Sullivan J.C.
        Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition.
        Am J Physiol Regul Integr Comp Physiol. 2008; 294: R1220-R1226
        • Rabi D.M.
        • Khan N.
        • Vallee M.
        • et al.
        Reporting on sex-based analysis in clinical trials of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker efficacy.
        Can J Cardiol. 2008; 24: 491-496
        • Cobo G.
        • Hecking M.
        • Port F.K.
        • et al.
        Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis.
        Clin Sci (Lond). 2016; 130: 1147-1163
        • Brar A.
        • Markell M.
        Impact of gender and gender disparities in patients with kidney disease.
        Curr Opin Nephrol Hypertens. 2019; 28: 178-182
        • van den Beukel T.O.
        • de Goeij M.C.
        • Dekker F.W.
        • et al.
        Differences in progression to ESRD between black and white patients receiving predialysis care in a universal health care system.
        Clin J Am Soc Nephrol. 2013; 8: 1540-1547
        • Samuel S.M.
        • Palacios-Derflingher L.
        • Tonelli M.
        • et al.
        Association between First Nations ethnicity and progression to kidney failure by presence and severity of albuminuria.
        CMAJ. 2014; 186: E86-E94
        • Murphy E.L.
        • Dai F.
        • Blount K.L.
        • et al.
        Revisiting racial differences in ESRD due to ADPKD in the United States.
        BMC Nephrol. 2019; 20: 55
        • Zacharias J.M.
        • Young T.K.
        • Riediger N.D.
        • Roulette J.
        • Bruce S.G.
        Prevalence, risk factors and awareness of albuminuria on a Canadian First Nation: a community-based screening study.
        BMC Public Health. 2012; 12: 290
        • Gao S.
        • Manns B.J.
        • Culleton B.F.
        • et al.
        Prevalence of chronic kidney disease and survival among aboriginal people.
        J Am Soc Nephrol. 2007; 18: 2953-2959
        • Vart P.
        • van Zon S.K.R.
        • Gansevoort R.T.
        • Bultmann U.
        • Reijneveld S.A.
        SES, chronic kidney disease, and race in the U.S.: a systematic review and meta-analysis.
        Am J Prev Med. 2017; 53: 730-739
        • Crews D.C.
        • Gutierrez O.M.
        • Fedewa S.A.
        • et al.
        Low income, community poverty and risk of end stage renal disease.
        BMC Nephrol. 2014; 15: 192
        • Garrity B.H.
        • Kramer H.
        • Vellanki K.
        • et al.
        Time trends in the association of ESRD incidence with area-level poverty in the US population.
        Hemodial Int. 2016; 20: 78-83
        • Bukabau J.B.
        • Yayo E.
        • Gnionsahe A.
        • et al.
        Performance of creatinine- or cystatin C-based equations to estimate glomerular filtration rate in sub-Saharan African populations.
        Kidney Int. 2019; 95: 1181-1189
        • Zhang M.
        • Chen Y.
        • Tang L.
        • et al.
        Applicability of chronic kidney disease epidemiology collaboration equations in a Chinese population.
        Nephrol Dial Transplant. 2014; 29: 580-586
        • Crews D.C.
        • Bello A.K.
        • Saadi G.
        • World Kidney Day Steering Committee
        Burden, access, and disparities in kidney disease.
        Kidney Int. 2019; 95: 242-248
        • Hanly P.J.
        • Ahmed S.B.
        Sleep apnea and the kidney: is sleep apnea a risk factor for chronic kidney disease?.
        Chest. 2014; 146: 1114-1122
        • Nicholl D.D.
        • Ahmed S.B.
        • Loewen A.H.
        • et al.
        Declining kidney function increases the prevalence of sleep apnea and nocturnal hypoxia.
        Chest. 2012; 141: 1422-1430
        • Ahmed S.B.
        • Ronksley P.E.
        • Hemmelgarn B.R.
        • et al.
        Nocturnal hypoxia and loss of kidney function.
        PLoS One. 2011; 6e19029
        • Zalucky A.A.
        • Nicholl D.D.
        • Hanly P.J.
        • et al.
        Nocturnal hypoxemia severity and renin-angiotensin system activity in obstructive sleep apnea.
        Am J Respir Crit Care Med. 2015; 192: 873-880
        • Nicholl D.D.
        • Hanly P.J.
        • Poulin M.J.
        • et al.
        Evaluation of continuous positive airway pressure therapy on renin-angiotensin system activity in obstructive sleep apnea.
        Am J Respir Crit Care Med. 2014; 190: 572-580
        • Chen L.D.
        • Lin L.
        • Ou Y.W.
        • et al.
        Effect of positive airway pressure on glomerular filtration rate in patients with sleep-disordered breathing: a meta-analysis.
        Sleep Breath. 2017; 21: 53-59
        • McEvoy R.D.
        • Antic N.A.
        • Heeley E.
        • et al.
        CPAP for prevention of cardiovascular events in obstructive sleep apnea.
        N Engl J Med. 2016; 375: 919-931
        • Loffler K.A.
        • Heeley E.
        • Freed R.
        • et al.
        Effect of obstructive sleep apnea treatment on renal function in patients with cardiovascular disease.
        Am J Respir Crit Care Med. 2017; 196: 1456-1462
        • Rimke A.N.
        • Ahmed S.B.
        • Turin T.C.
        • et al.
        Effect of CPAP therapy on kidney function in patients with obstructive sleep apnoea and chronic kidney disease: a protocol for a randomised controlled clinical trial.
        BMJ Open. 2019; 9e024632
        • Nomura K.
        • Asayama K.
        • Jacobs L.
        • Thijs L.
        • Staessen J.A.
        Renal function in relation to sodium intake: a quantitative review of the literature.
        Kidney Int. 2017; 92: 67-78
        • Yoon C.Y.
        • Noh J.
        • Lee J.
        • et al.
        High and low sodium intakes are associated with incident chronic kidney disease in patients with normal renal function and hypertension.
        Kidney Int. 2018; 93: 921-931
        • Ibels L.S.
        • Alfrey A.C.
        • Haut L.
        • Huffer W.E.
        Preservation of function in experimental renal disease by dietary restriction of phosphate.
        N Engl J Med. 1978; 298: 122-126
        • O’Seaghdha C.M.
        • Hwang S.J.
        • Muntner P.
        • Melamed M.L.
        • Fox C.S.
        Serum phosphorus predicts incident chronic kidney disease and end-stage renal disease.
        Nephrol Dial Transplant. 2011; 26: 2885-2890
        • Schwarz S.
        • Trivedi B.K.
        • Kalantar-Zadeh K.
        • Kovesdy C.P.
        Association of disorders in mineral metabolism with progression of chronic kidney disease.
        Clin J Am Soc Nephrol. 2006; 1: 825-831
        • Zoccali C.
        • Ruggenenti P.
        • Perna A.
        • et al.
        Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition.
        J Am Soc Nephrol. 2011; 22: 1923-1930
        • Norris K.C.
        • Greene T.
        • Kopple J.
        • et al.
        Baseline predictors of renal disease progression in the African American Study of Hypertension and Kidney Disease.
        J Am Soc Nephrol. 2006; 17: 2928-2936
        • Rebholz C.M.
        • Crews D.C.
        • Grams M.E.
        • et al.
        DASH (Dietary Approaches to Stop Hypertension) diet and risk of subsequent kidney disease.
        Am J Kidney Dis. 2016; 68: 853-861
        • Li L.
        • Yang C.
        • Zhao Y.
        • et al.
        Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: A systematic review and meta-analysis based on observational cohort studies.
        BMC Nephrol. 2014; 15: 122
        • Goicoechea M.
        • Garcia de Vinuesa S.
        • Verdalles U.
        • et al.
        Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial.
        Am J Kidney Dis. 2015; 65: 543-549
        • Sampson A.L.
        • Singer R.F.
        • Walters G.D.
        Uric acid lowering therapies for preventing or delaying the progression of chronic kidney disease.
        Cochrane Database Syst Rev. 2017; 10: CD009460
        • Hemmelgarn B.R.
        • Manns B.J.
        • Lloyd A.
        • et al.
        Relation between kidney function, proteinuria, and adverse outcomes.
        JAMA. 2010; 303: 423-429
        • Deckert T.
        • Feldt-Rasmussen B.
        • Borch-Johnsen K.
        • Jensen T.
        • Kofoed-Enevoldsen A.
        Albuminuria reflects widespread vascular damage. The Steno hypothesis.
        Diabetologia. 1989; 32: 219-226
        • Palmer S.C.
        • Ruospo M.
        • Teixeira-Pinto A.
        • et al.
        The validity of drug effects on proteinuria, albuminuria, serum creatinine, and estimated GFR as surrogate end points for ESKD: a systematic review.
        Am J Kidney Dis. 2018; 72: 779-789
        • Harrison T.G.
        • Tam-Tham H.
        • Hemmelgarn B.R.
        • et al.
        Change in proteinuria or albuminuria as a surrogate for cardiovascular and other major clinical outcomes: a systematic review and meta-analysis.
        Can J Cardiol. 2019; 35: 77-91
        • Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group
        KDIGO clinical practice guideline for acute kidney injury.
        Kidney Int. 2012; suppl 2: 1-138
        • Lewington A.J.
        • Cerda J.
        • Mehta R.L.
        Raising awareness of acute kidney injury: a global perspective of a silent killer.
        Kidney Int. 2013; 84: 457-467
        • Hoste E.A.
        • Bagshaw S.M.
        • Bellomo R.
        • et al.
        Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study.
        Intensive Care Med. 2015; 41: 1411-1423
        • Chawla L.S.
        • Eggers P.W.
        • Star R.A.
        • Kimmel P.L.
        Acute kidney injury and chronic kidney disease as interconnected syndromes.
        N Engl J Med. 2014; 371: 58-66
        • Levey A.S.
        • James M.T.
        Acute kidney injury.
        Ann Intern Med. 2017; 167: ITC66-ITC80
        • James M.T.
        • Pannu N.
        • Hemmelgarn B.R.
        • et al.
        Derivation and external validation of prediction models for advanced chronic kidney disease following acute kidney injury.
        JAMA. 2017; 318: 1787-1797
        • Hu M.K.
        • Witham M.D.
        • Soiza R.L.
        Oral bicarbonate therapy in non-haemodialysis dependent chronic kidney disease patients: a systematic review and meta-analysis of randomised controlled trials.
        J Clin Med. 2019; 8: E208
        • Goraya N.
        • Simoni J.
        • Jo C.H.
        • Wesson D.E.
        Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate.
        Kidney Int. 2014; 86: 1031-1038
        • Hung S.C.
        • Lai Y.S.
        • Kuo K.L.
        • Tarng D.C.
        Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies.
        J Am Heart Assoc. 2015; 4e001918
        • Braam B.
        • Lai C.F.
        • Abinader J.
        • Bello A.K.
        Extracellular fluid volume expansion, arterial stiffness and uncontrolled hypertension in patients with chronic kidney disease [e-pub ahead of print]. Nephrol Dial Transplant.
        https://doi.org/10.1093/ndt/gfz020
        • Fishbane S.
        • Spinowitz B.
        Update on anemia in ESRD and earlier stages of CKD: core curriculum 2018.
        Am J Kidney Dis. 2018; 71: 423-435
        • Elliott S.
        • Tomita D.
        • Endre Z.
        Erythropoiesis stimulating agents and reno-protection: a meta-analysis.
        BMC Nephrol. 2017; 18: 14
        • Koulouridis I.
        • Alfayez M.
        • Trikalinos T.A.
        • Balk E.M.
        • Jaber B.L.
        Dose of erythropoiesis-stimulating agents and adverse outcomes in CKD: a metaregression analysis.
        Am J Kidney Dis. 2013; 61: 44-56
        • Palmer S.C.
        • Navaneethan S.D.
        • Craig J.C.
        • et al.
        Meta-analysis: erythropoiesis-stimulating agents in patients with chronic kidney disease.
        Ann Intern Med. 2010; 153: 23-33
        • Saglimbene V.M.
        • Palmer S.C.
        • Ruospo M.
        • et al.
        Continuous erythropoiesis receptor activator (CERA) for the anaemia of chronic kidney disease.
        Cochrane Database Syst Rev. 2017; 8: CD009904
        • Maini R.
        • Wong D.B.
        • Addison D.
        • et al.
        Persistent under-representation of kidney disease in randomized, controlled trials of cardiovascular disease in the contemporary era.
        J Am Soc Nephrol. 2018; 29: 2782-2786