Advertisement
Canadian Journal of Cardiology

Physician Judgement vs Model-Predicted Prognosis in Patients With Heart Failure

      Abstract

      Background

      Previous evidence suggests that cardiologists and family doctors have limited accuracy in predicting patient prognosis. Predictive models with satisfactory accuracy for estimating mortality in patients with heart failure (HF) exist; physicians, however, seldom use these models. We evaluated the relative accuracy of physician vs model prediction to estimate 1-year survival in ambulatory patients with HF.

      Methods

      We conducted a single-centre cross-sectional study involving 150 consecutive ambulatory patients with HF >18 years of age with a left ventricular ejection fraction ≤40%. Each patient’s cardiologist and family doctor provided their predicted 1-year survival, and predicted survival scores were calculated using 3 models: HF Meta-Score, Seattle Heart Failure Model (SHFM), and Meta-Analysis Global Group in Chronic HF (MAGGIC) score. We compared accuracy between physician and model predictions using intraclass correlation (ICC).

      Results

      Median predicted survival by HF cardiologists was lower (median 80%, interquartile range [IQR]: 61%-90%) than that predicted by family physicians (median 90%, IQR 70%-99%, P = 0.08). One-year median survival calculated by the HF Meta-Score (94.6%), SHFM (95.4%), and MAGGIC (88.9%,) proved as high or higher than physician estimates. Agreement among HF cardiologists (ICC 0.28-0.41) and family physicians (ICC 0.43-0.47) when compared with 1-year model-predicted survival scores proved limited, whereas the 3 models agreed well (ICC > 0.65).

      Conclusions

      HF cardiologists underestimated survival in comparison with family physicians, whereas both physician estimates were lower than calculated model estimates. Our results provide additional evidence of potential inaccuracy of physician survival predictions in ambulatory patients with HF. These results should be validated in longitudinal studies collecting actual survival.

      Résumé

      Contexte

      Les données issues d’études antérieures indiquent que le pronostic établi par les cardiologues et les médecins de famille est rarement précis. Il existe des modèles prédictifs d’une précision satisfaisante pour estimer la mortalité chez les patients présentant une insuffisance cardiaque (IC), mais rares sont les médecins qui les utilisent. Nous avons comparé la précision relative des prédictions faites par les médecins à celles obtenues à l’aide de modèles à l’égard de l’estimation de la survie à 1 an chez des patients ambulatoires présentant une IC.

      Méthodologie

      Nous avons mené une étude transversale unicentrique sur les cas de 150 patients ambulatoires consécutifs âgés de > 18 ans présentant une IC et une fraction d’éjection ventriculaire gauche ≤ 40 %. Le cardiologue et le médecin de famille de chacun des patients ont évalué la survie à 1 an, et nous avons calculé les scores de survie prédite à l'aide de 3 modèles : HF Meta-Score, SHFM (Seattle Heart Failure Model) et MAGGIC (Meta-Analysis Global Group in Chronic HF). Nous avons ensuite comparé la précision des prédictions des médecins avec celle des prédictions des modèles en calculant la corrélation intraclasse (CIC).

      Résultats

      La survie médiane prédite par les cardiologues spécialisés en IC était inférieure (médiane de 80 %, intervalle interquartile [IIQ] : de 61 % à 90 %) à celle prédite par les médecins de famille (médiane de 90 %, IIQ : de 70 % à 99 %, p = 0,08). La survie médiane à 1 an calculée au moyen des modèles HF Meta-Score (94,6 %), SHFM (95,4 %) et MAGGIC (88,9 %) était équivalente ou supérieure aux estimations des médecins. La concordance entre les prédictions des cardiologues spécialisés en IC (CIC : de 0,28 à 0,41) et des médecins de famille (CIC : de 0,43 à 0,47) et les scores de survie à 1 an prédits par les modèles était faible, tandis que les prédictions des trois modèles concordaient bien (CIC > 0,65).

      Conclusions

      Les cardiologues spécialisés en IC ont sous-estimé la survie par rapport aux médecins de famille, tandis que les deux groupes de médecins ont fait des prédictions inférieures à celles des modèles. Les résultats de l'étude fournissent des preuves supplémentaires de l'inexactitude potentielle des prédictions de la survie faites par les médecins chez les patients ambulatoires présentant une IC. Il conviendrait de valider ces résultats au moyen d'études longitudinales comportant des données sur la survie réelle.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mozaffarian D.
        • Benjamin E.J.
        • Go A.S.
        • et al.
        Heart Disease and Stroke Statistics–2016 Update: a report from the American Heart Association.
        Circulation. 2016; 133: e38-e360
        • Chow C.M.
        • Donovan L.
        • Manuel D.
        • Johansen H.
        • Tu J.V.
        Canadian Cardiovascular Outcomes Research Team. Regional variation in self-reported heart disease prevalence in Canada.
        Can J Cardiol. 2005; 21: 1265-1271
      1. Heart and Stroke Foundation. Report on the Health of Canadians: The Burden of Heart Failure.
        2016 (Available at:)
        • Bui A.L.
        • Horwich T.B.
        • Fonarow G.C.
        Epidemiology and risk profile of heart failure.
        Nat Rev Cardiol. 2011; 8: 30-41
        • Laribi S.
        • Aouba A.
        • Resche-Rigon M.
        • et al.
        Trends in death attributed to myocardial infarction, heart failure and pulmonary embolism in Europe and Canada over the last decade.
        QJM. 2014; 107: 813-820
        • Alba A.C.
        • Agoritsas T.
        • Jankowski M.
        • et al.
        Risk prediction models for mortality in ambulatory patients with heart failure: a systematic review.
        Circ Heart Fail. 2013; 6: 881-889
        • Reilly B.M.
        • Evans A.T.
        • Schaider J.J.
        • et al.
        Impact of a clinical decision rule on hospital triage of patients with suspected acute cardiac ischemia in the emergency department.
        JAMA. 2002; 288: 342-350
        • Rahimi K.
        • Bennett D.
        • Conrad N.
        • et al.
        Risk prediction in patients with heart failure: a systematic review and analysis.
        J Am Coll Cardiol Heart Fail. 2014; 2: 440-446
        • McGinn T.G.
        • Guyatt G.H.
        • Wyer P.C.
        • Naylor C.D.
        • Stiell I.G.
        • Richardson W.S.
        Users' guides to the medical literature: XXII: how to use articles about clinical decision rules. Evidence-Based Medicine Working Group.
        JAMA. 2000; 284: 79-84
        • Aujesky D.
        • Fine M.J.
        The pneumonia severity index: a decade after the initial derivation and validation.
        Clin Infect Dis. 2008; 47: S133-S139
        • Farges O.
        • Vibert E.
        • Cosse C.
        • et al.
        "Surgeons' intuition" versus "prognostic models": predicting the risk of liver resections.
        Ann Surg. 2014; 260 (discussion 928-30): 923-928
        • Dawes R.M.
        • Faust D.
        • Meehl P.E.
        Clinical versus actuarial judgment.
        Science. 1989; 243: 1668-1674
        • Grove W.M.
        Clinical versus statistical prediction: the contribution of Paul E. Meehl.
        J Clin Psychol. 2005; 61: 1233-1243
        • Chew D.P.
        • Junbo G.
        • Parsonage W.
        • et al.
        Perceived risk of ischemic and bleeding events in acute coronary syndromes.
        Circ Cardiovasc Qual Outcomes. 2013; 6: 299-308
        • Ambardekar A.V.
        • Thibodeau J.T.
        • DeVore A.D.
        • et al.
        Discordant perceptions of prognosis and treatment options between physicians and patients with advanced heart failure.
        J Am Coll Cardiol Heart Fail. 2017; 5: 663-671
        • Muntwyler J.
        • Abetel G.
        • Gruner C.
        • Follath F.
        One-year mortality among unselected outpatients with heart failure.
        Eur Heart J. 2002; 23: 1861-1866
        • Levy W.C.
        • Mozaffarian D.
        • Linker D.T.
        • et al.
        The Seattle Heart Failure Model: prediction of survival in heart failure.
        Circulation. 2006; 113: 1424-1433
        • Alba A.C.
        • Walter S.D.
        • Guyatt G.H.
        • et al.
        Predicting survival in patients with heart failure with an implantable cardioverter defibrillator: the Heart Failure Meta-Score.
        J Card Fail. 2018; 24: 735-745
        • Pocock S.J.
        • Ariti C.A.
        • McMurray J.J.
        • et al.
        Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies.
        Eur Heart J. 2013; 34: 1404-1413
        • Allen L.A.
        • Yager J.E.
        • Funk M.J.
        • et al.
        Discordance between patient-predicted and model-predicted life expectancy among ambulatory patients with heart failure.
        JAMA. 2008; 299: 2533-2542
        • Moons K.G.
        • Kengne A.P.
        • Woodward M.
        • et al.
        Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker.
        Heart. 2012; 98: 683-690
        • Banerjee P.
        • Watson C.
        • Ali D.
        Discussing prognosis in feart failure: a questionnaire-based study of the patient's view.
        J Am Coll Cardiol Heart Fail. 2018; 6: 803-804
        • Delaney L.J.
        Patient-centred care as an approach to improving health care in Australia.
        Collegian. 2018; 25: 119-123
        • Haizlip J.
        • May N.
        • Schorling J.
        • Williams A.
        • Plews-Ogan M.
        Perspective: the negativity bias, medical education, and the culture of academic medicine: why culture change is hard.
        Acad Med. 2012; 87: 1205-1209
        • Dhaliwal G.
        • Detsky A.S.
        The evolution of the master diagnostician.
        JAMA. 2013; 310: 579-580
        • Canepa M.
        • Fonseca C.
        • Chioncel O.
        • et al.
        Performance of prognostic risk scores in chronic heart failure patients enrolled in the European Society of Cardiology Heart Failure Long-Term Registry.
        J Am Coll Cardiol Heart Fail. 2018; 6: 452-462
        • Ezekowitz J.A.
        • O'Meara E.
        • McDonald M.A.
        • et al.
        2017 Comprehensive update of the Canadian Cardiovascular Society Guidelines for the Management of Heart Failure.
        Can J Cardiol. 2017; 33: 1342-1433
        • Cabana M.D.
        • Rand C.S.
        • Powe N.R.
        • et al.
        Why don't physicians follow clinical practice guidelines? A framework for improvement.
        JAMA. 1999; 282: 1458-1465
        • McGinn T.
        Putting meaning into meaningful use: a roadmap to successful integration of evidence at the point of care.
        JMIR Med Inform. 2016; 4: e16
        • Afilalo J.
        • Alexander K.P.
        • Mack M.J.
        • et al.
        Frailty assessment in the cardiovascular care of older adults.
        J Am Coll Cardiol. 2014; 63: 747-762

      Linked Article