Abstract
Background
The relationship between clinical outcomes and gene mutations in Chinese pediatric
patients with idiopathic and heritable pulmonary arterial hypertension (PAH) is unclear.
Methods
We retrospectively studied the clinical characteristics and outcomes of pediatric
patients who visited Beijing Anzhen Hospital from September 2008 to December 2018.
Results
Eighty-two pediatric patients were included. Forty-two gene mutations were identified
in 41 patients (50%), including 25 mutations in BMPR2, 5 mutations in ACVRL1, 3 mutations
each in ABCA3 and NOTCH3, 2 mutations each in KCNK3 and HTR2B, 1 mutation in ENG,
and 1 mutation in EIF2AK4. The mean age at diagnosis of PAH was 86.4 ± 55.1 months.
Forty-eight patients (twenty-eight mutation carriers) underwent cardiac catheterization
examinations, with acute vasodilator testing performed simultaneously. Results showed
that mutation carriers demonstrated a higher pulmonary vascular resistance index (P = 0.037). Patients with gene mutations responded poorly to vasodilators (P = 0.001). The 1-, 2-, and 3-year survival rates of mutation noncarriers were 95.1%,
87.8%, and 82.5% respectively; while for mutation carriers, the proportions were 86.6%
(P = 0.216), 63.8% (P = 0.021), and 52.2% (P = 0.010), respectively. Cardiac index was an independent predictor of death (P = 0.005; odds ratio [OR] 2.16, 95% confidence interval [CI] 1.258-3.704), as well
as RAP (P = 0.01; OR 1.26, 95% CI 1.056-1.503).
Conclusions
In our cohort of Chinese pediatric patients, those with an identified gene mutation
demonstrated worse clinical outcomes. Therefore, early gene screening for pediatric
patients with idiopathic and heritable PAH is recommended, and more aggressive treatment
for mutation carriers may be advisable.
Résumé
Contexte
La relation entre les résultats cliniques et les mutations génétiques chez les enfants
chinois atteints d’hypertension artérielle pulmonaire (HTAP) idiopathique et héréditaire
n’est pas bien comprise.
Méthodologie
Nous avons examiné rétrospectivement les caractéristiques et les résultats cliniques
d’enfants qui ont visité l’hôpital Anzhen de Beijing entre septembre 2008 et décembre 2018.
Résultats
Au total, 82 enfants ont été admis dans l’étude. Quarante-deux mutations génétiques
ont été détectées chez 41 patients (50 %), soit 25 mutations de BMPR2, 5 mutations de ACVRL1, 3 mutations chacun de ABCA3 et de NOTCH3, 2 mutations chacun de KCNK3 et de HTR2B, 1 mutation de ENG et 1 mutation de EIF2AK4. L’âge moyen au diagnostic de HTAP s’établissait à 86,4 ± 55,1 mois. Quarante-huit
patients (28 porteurs de mutations) ont subi un examen par cathétérisme cardiaque,
pendant lequel un test de vasodilatation aiguë était réalisé simultanément. Les résultats
révèlent un index de résistance vasculaire pulmonaire plus élevé chez les porteurs
de mutation (p = 0,037). Les patients porteurs d’une mutation génétique ne répondaient pas bien aux vasodilatateurs
(p = 0,001). Les taux de survie à 1 an, 2 ans et 3 ans chez les patients non porteurs
de mutation s’établissaient respectivement à 95,1 %, 87,8 % et 82,5 %; chez les porteurs
de mutation, les taux étaient de 86,6 % (p = 0,216), 63,8 % (p = 0,021) et 52,2 % (p = 0,010), respectivement. L’index cardiaque était un facteur de prédiction indépendant
de décès (p = 0,005; rapport de cotes [RC] de 2,16; intervalle de confiance [IC] à 95 % : de 1,258
à 3,704), ainsi que de pression auriculaire droite (p = 0,01; RC de 1,26; IC à 95 % : de 1,056 à 1,503).
Conclusions
Dans la cohorte d’enfants chinois étudiée, les résultats cliniques étaient moins bons
chez les porteurs d’une mutation génétique. Un dépistage génétique précoce est donc
recommandé chez les enfants atteints de HTAP idiopathique et héréditaire; un traitement
plus énergique pourrait aussi être indiqué chez les porteurs de mutation.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of CardiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension.Kardiologia Polska. 2016; 73: 1127
- Heterogeneity of pathologic lesions in familial primary pulmonary hypertension.Am Rev Respir Dis. 1988; 138: 952-957
- Primary pulmonary hypertension.Lancet. 2003; 361: 1533-1544
- Vasodilator therapy for primary pulmonary hypertension in children.Circulation. 1999; 99: 1197-1208
- Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension.Nat Genet. 2000; 26: 81-84
- BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension.Am J Hum Genet. 2001; 68: 92-102
- Genetics of pulmonary arterial hypertension.Clin Chest Med. 2013; 34: 651-663
- A systematic review of genetic mutations in pulmonary arterial hypertension.BMC Med Genet. 2017; 18: 82
- Genetics and genomics of pulmonary arterial hypertension.Eur Respir J. 2019; 53
- Registries for paediatric pulmonary hypertension.Eur Respir J. 2013; 42: 580-583
- Clinical features of paediatric pulmonary hypertension: a registry study.Lancet. 2012; 379: 537-546
- Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation.Am J Respir Crit Care Med. 2008; 177: 1377-1383
- Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation.Am J Respir Crit Care Med. 2010; 181: 851-861
- Outcomes of childhood pulmonary arterial hypertension in BMPR2 and ALK1 mutation carriers.Am J Cardiol. 2012; 110: 586-593
- Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension.Circulation. 2005; 111: 3105-3111
- Identification of multiple ACVRL1 mutations in patients with pulmonary arterial hypertension by targeted exome capture.Clin Sci (Lond). 2016; 130: 1559-1569
- Screening mutations of MYBPC3 in 114 unrelated patients with hypertrophic cardiomyopathy by targeted capture and next-generation sequencing.Sci Rep. 2015; 5: 11411
- Intensive care, right ventricular support and lung transplantation in patients with pulmonary hypertension.Eur Respir J. 2019; 53: 1801906
- Safety and feasibility of the transcatheter approach to create a reverse potts shunt in children with idiopathic pulmonary arterial hypertension.Can J Cardiol. 2017; 33: 1188-1196
- Identification of rare sequence variation underlying heritable pulmonary arterial hypertension.Nat Commun. 2018; 9: 1416
- Genetic analyses in a cohort of children with pulmonary hypertension.Eur Respir J. 2016; 48: 1118-1126
- Bone morphogenetic protein receptor type 2 mutation in pulmonary arterial hypertension: a view on the right ventricle.Circulation. 2016; 133: 1747-1760
- Genetics and genomics of pulmonary arterial hypertension.J Am Coll Cardiol. 2013; 62: D13-21
- A novel channelopathy in pulmonary arterial hypertension.N Engl J Med. 2013; 369: 351-361
- Potassium channel subfamily K member 3 (KCNK3) contributes to the development of pulmonary arterial hypertension.Circulation. 2016; 133: 1371-1385
- Notch3 signaling promotes the development of pulmonary arterial hypertension.Nat Med. 2009; 15: 1289-1297
- Lung disease caused by ABCA3 mutations.Thorax. 2017; 72: 213-220
- A large kindred of pulmonary fibrosis associated with a novel ABCA3 gene variant.Respir Res. 2014; 15: 43
- Clinical implications of determining BMPR2 mutation status in a large cohort of children and adults with pulmonary arterial hypertension.J Heart Lung Transplant. 2008; 27: 668-674
- Survival of Chinese patients with pulmonary arterial hypertension in the modern treatment era.Chest. 2011; 140: 301-309
- Effect of pulmonary arterial hypertension-specific therapies on health-related quality of life: a systematic review.Chest. 2014; 146: 686-708
Article info
Publication history
Published online: August 01, 2019
Accepted:
July 29,
2019
Received:
April 11,
2019
Footnotes
See page 1855 for disclosure information.
Identification
Copyright
© 2019 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.