Abstract
Background
The diagnostic performance of coronary computed tomography angiography-derived fractional
flow reserve (CT-FFR) in detecting ischemia in myocardial bridging (MB) has not been
investigated to date.
Methods
This retrospective multicentre study included 104 patients with left anterior descending
MBs. MB was classified as either superficial or deep, short, or long, whereas all
MB vessels were further divided into <50%, 50% to 69%, and ≥70% groups, according
to proximal lumen stenosis on invasive coronary angiography. Diagnostic performance
and receiver operating characteristics (ROC) of CT-FFR to detect lesion-specific ischemia
was assessed on a per-vessel level, using invasive FFR as reference standard. Intraclass
correlation coefficient (ICC) and Bland-Altman plots were used for agreement measurement.
Results
Forty-eight MB vessels (46.2%) showed ischemia by invasive FFR (≤0.80). Sensitivity,
specificity, and accuracy of CT-FFR to detect functional ischemia were 0.96 (0.85
to 0.99), 0.84 (0.71 to 0.92), and 0.89 (0.81 to 0.94), respectively, in all MB vessels.
There were no differences in diagnostic performance between superficial and deep MB
or between short and long MB (all P > 0.05). The accuracy of CT-FFR was 0.96 (0.85 to 0.99) in ≥70% stenosis, 0.82 (0.67
to 0.91) in 50% to 69% stenosis, and 0.89 (0.51 to 0.99) in <50% stenosis (P = 0.081). Bland-Altman analysis showed a slight mean difference between CT-FFR and
invasive FFR of 0.014 (95% limit of agreement, –0.117 to 0.145). The ICC was 0.775
(95% confidence interval, 0.685-0.842, P < 0.001).
Conclusions
CT-FFR demonstrated high diagnostic performance for identifying functional ischemia
in vessels with MB and concomitant proximal atherosclerotic disease when compared
with invasive FFR. However, the clinical use of CT-FFR in patients with MB needs further
study for stronger and more robust results.
Résumé
Contexte
L'efficacité diagnostique de la mesure de la réserve de flux coronaire (FFR, pour
fractional flow reserve) par coronarographie par tomodensitométrie à déceler une ischémie causée par un pont
myocardique n'a pas encore été étudiée.
Méthodologie
Cette étude multicentrique rétrospective regroupait 104 patients présentant un pont
myocardique au niveau de l'artère interventriculaire antérieure. Les ponts myocardiques
étaient classés comme superficiels ou profonds, courts ou longs, tandis que tous les
vaisseaux présentant un pont myocardique étaient quant à eux classés dans les groupes
< 50 %, 50 % à 69 %, et ≥ 70 % en fonction de la sténose proximale observée à la coronarographie
invasive. L'efficacité diagnostique et la courbe ROC (pour receiver operating characteristics) de la mesure de la réserve de flux coronaire à détecter une ischémie propre à une
lésion ont été évaluées en fonction des vaisseaux atteints, en utilisant la mesure
invasive de la réserve de flux coronaire comme norme de référence. Le coefficient
de corrélation intra-classe et des graphiques de Bland-Altman ont été utilisés pour
mesurer la concordance.
Résultats
La mesure invasive de la réserve de flux coronaire a révélé une ischémie dans 48 vaisseaux
présentant un pont myocardique (46,2 %) (≤ 0,80). La sensibilité, la spécificité et
la précision de la mesure de la réserve de flux coronaire par coronarographie par
tomodensitométrie à détecter une ischémie fonctionnelle étaient de 0,96 (0,85 à 0,99),
0,84 (0,71 à 0,92) et 0,89 (0,81 à 0,94), respectivement, pour tous les vaisseaux
présentant un pont myocardique. Aucune différence n'a été observée quant à l'efficacité
diagnostique entre les ponts myocardiques superficiels et profonds, ou entre les ponts
myocardiques courts et longs (valeur p > 0,05 dans tous les cas). La précision de la mesure de la réserve de flux coronaire
par coronarographie par tomodensitométrie était de 0,96 (0,85 à 0,99) dans le cas
d'une sténose ≥ 70 %, de 0,82 (0,67 à 0,91) dans celui d'une sténose de 50 % à 69
%, et de 0,89 (0,51 à 0,99) dans celui d'une sténose < 50 % (p = 0,081). L'analyse de Bland-Altman a révélé une différence moyenne légère de 0,014
entre la mesure de la réserve de flux coronaire par coronarographie par tomodensitométrie
et la mesure invasive de la réserve de flux coronaire (limites de concordance à 95
%, –0,117 à 0,145). Le coefficient de corrélation intra-classe était de 0,775 (intervalle
de confiance à 95 %, 0,685-0,842; p < 0,001).
Conclusions
La mesure de la réserve de flux coronaire par coronarographie par tomodensitométrie
a été associée à une efficacité diagnostique élevée pour ce qui est du repérage d'une
ischémie fonctionnelle au niveau des vaisseaux présentant un pont myocardique et de
l'athérosclérose proximale concomitante, comparativement à la mesure invasive de la
réserve de flux coronaire. L'utilisation en pratique clinique de la mesure de la réserve
de flux coronaire par coronarographie par tomodensitométrie chez les patients présentant
un pont myocardique doit toutefois faire l'objet d'études plus approfondies afin d'obtenir
des résultats plus probants.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of CardiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Fractional flow reserve-guided PCI for stable coronary artery disease.N Engl J Med. 2014; 371: 1208-1217
- Guidelines on myocardial revascularization.Eur Heart J. 2010; 31: 2501-2555
- U.S. trends in inpatient utilization of fractional flow reserve and percutaneous coronary intervention.J Am Coll Cardiol. 2016; 67: 732-733
- Fractional flow reserve derived from coronary computed tomography angiography: diagnostic performance in hypertensive and diabetic patients.Eur Heart J Cardiovasc Imaging. 2017; 18: 1351-1360
- Diagnostic accuracy of fractional flow reserve from anatomic CT angiography.JAMA. 2012; 308: 1237-1245
- Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps).J Am Coll Cardiol. 2014; 63: 1145-1155
- Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice.Int J Cardiovasc Imaging. 2017; 33: 271-281
- 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM Study.J Am Coll Cardiol. 2016; 68: 435-445
- Coronary CT angiography-derived fractional flow reserve.Radiology. 2017; 285: 17-33
- Coronary computed tomographic angiography-derived fractional flow reserve based on machine learning for risk stratification of non-culprit coronary narrowings in patients with acute coronary syndrome.Am J Cardiol. 2017; 120: 1260-1266
- Workstation-based calculation of CTA-based FFR for intermediate stenosis.JACC Cardiovasc Imaging. 2016; 9: 690-699
- A machine-learning approach for computation fractional flow reserve from coronary computed tomography.J Appl Physiol (1985). 2016; 121: 42-52
- Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling.Radiology. 2018; 288: 64-72
- Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: results from a PC-based prototype algorithm.J Cardiovasc Comput Tomogr. 2018; 12: 101-107
- Left anterior descending artery myocardial bridging: a clinical approach.J Am Coll Cardiol. 2016; 68: 2887-2899
- Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies.J Am Coll Cardiol. 2014; 63: 2346-2355
- Development of a computational fluid dynamics model for myocardial bridging.J Biomech Eng. 2018; : 140
- Functional versus anatomic assessment of myocardial bridging by intravascular ultrasound: impact of arterial compression on proximal atherosclerotic plaque.J Am Heart Assoc. 2016; 5e001735
- Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging.J Am Coll Cardiol. 2003; 42: 226-233
- Surgical unroofing of hemodynamically significant myocardial bridges in a pediatric population.J Thorac Cardiovasc Surg. 2018; 156: 1618-1626
- Myocardial bridges spared from atherosclerosis: overview of the underlying mechanisms.Can J Cardiol. 2009; 25: 219-222
- Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging.Eur Radiol. 2019; 29: 3017-3026
- Anatomic properties of myocardial bridge predisposing to myocardial infarction.Circulation. 2009; 120: 376-383
- The prevalence and anatomical patterns of intramuscular coronary arteries: a coronary computed tomography angiographic study.J Am Coll Cardiol. 2007; 49: 587-593
- Patterns of coronary arterial lesion calcification by a novel, cross-sectional CT angiographic assessment.Int J Cardiovasc Imaging. 2013; 29: 1619-1627
- Regional calcified plaque score evaluated by multidetector computed tomography for predicting the addition of rotational atherectomy during percutaneous coronary intervention.J Cardiovasc Comput Tomogr. 2016; 10: 221-228
- Performing and interpreting fractional flow reserve measurements in clinical practice: an expert consensus document.Interv Cardiol. 2017; 12: 97-109
- Fractional flow reserve derived from computed tomographic angiography in patients with multivessel CAD.J Am Coll Cardiol. 2018; 71: 2756-2769
- Severity scores for Ebstein anomaly: credibility and usefulness of echocardiographic versus magnetic resonance assessments of the Celermajer Index [e-pub ahead of print].Can J Cardiol. 2019;
- Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.Biometrics. 1988; 44: 837-845
- Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium.Circ Cardiovasc Imaging. 2018; 11e007217
- Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: a multi-center study and meta-analysis.Eur J Radiol. 2019; 116: 90-97
- Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study.Circ Cardiovasc Imaging. 2013; 6: 881-889
- Experience with an on-site coronary computed tomography-derived fractional flow reserve algorithm for the assessment of intermediate coronary stenoses.Am J Cardiol. 2018; 121: 9-13
- Coronary lesion characteristics with mismatch between fractional flow reserve derived from CT and invasive catheterization in clinical practice.Heart Vessels. 2017; 32: 390-398
- Unmasking myocardial bridge-related ischemia by intracoronary functional evaluation.Circ Cardiovasc Interv. 2018; 11e006247
Article info
Publication history
Published online: August 27, 2019
Accepted:
August 21,
2019
Received:
June 29,
2019
Footnotes
See page 1532 for disclosure information.
Identification
Copyright
© 2019 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.